1,354 research outputs found

    The Effects of Nutrition Package Claims, Nutrition Facts Panels, and Motivation to Process Nutrition Information on Consumer Product Evaluations

    Get PDF
    In a laboratory experiment using a between-subjects design, the authors examine the effects on nutrition and product evaluations of nutrition claims made (e.g., 99% fat free; low in calories ) on a product package, product nutrition value levels, and enduring motivation to process nutrition information. Enduring motivation is shown to moderate the effects of product nutrition value on consumer evaluations. Also, nutrition claims interact with product nutrition value in affecting consumer perceptions of manufacturer credibility. Given the availability of nutrient levels in the Nutrition Facts panel on the back of the mock package, nutrition claims on the front of the package generally did not affect positively consumers\u27 overall product and purchase intention evaluations. The authors discuss some implications of these findings, suggestions for further research, and study limitations

    Multi site polyadenylation and transcriptional response to stress of a vacuolar type H(+)-ATPase subunit A gene in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Vacuolar type H(+)-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H(+)-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. RESULTS: Evidence suggests that subunit A of the vacuolar type H(+)-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. CONCLUSIONS: Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H(+)-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation

    Electron Transfer Reactivity of Type Zero Pseudomonas aeruginosa Azurin

    Get PDF
    Type zero copper is a hard-ligand analogue of the classical type 1 or blue site in copper proteins that function as electron transfer (ET) agents in photosynthesis and other biological processes. The EPR spectroscopic features of type zero Cu^(II) are very similar to those of blue copper, although lacking the deep blue color, due to the absence of thiolate ligation. We have measured the rates of intramolecular ET from the pulse radiolytically generated C3−C26 disulfide radical anion to the Cu^(II) in both type zero C112D/M121L and type 2 C112D Pseudomonas aeruginosa azurins in pH 7.0 aqueous solutions between 8 and 45 °C. We also have obtained rate/temperature (10−30 °C) profiles for ET reactions between these mutants and the wild-type azurin. Analysis of the rates and activation parameters for both intramolecular and intermolecular ET reactions indicates that the type zero copper reorganization energy falls in a range (0.9−1.1 eV) slightly above that for type 1 (0.7−0.8 eV), but substantially smaller than that for type 2 (>2 eV), consistent with XAS and EXAFS data that reveal minimal type zero site reorientation during redox cycling

    A multi-systems approach to human movement after ACL reconstruction: the cardiopulmonary system

    Get PDF
    The cardiopulmonary system plays a pivotal role in athletic and rehabilitative activities following anterior cruciate ligament reconstruction, along with serving as an important support for the functioning of other physiologic systems including the integumentary, musculoskeletal, and nervous systems. Many competitive sports impose high demands upon the cardiorespiratory system, which requires careful attention and planning from rehabilitation specialists to ensure athletes are adequately prepared to return to sport. Cardiopulmonary function following anterior cruciate ligament reconstruction (ACLR) can be assessed using a variety of methods, depending on stage of healing, training of the clinician, and equipment availability. Reductions in cardiovascular function may influence the selection and dosage of interventions that are not only aimed to address cardiopulmonary impairments, but also deficits experienced in other systems that ultimately work together to achieve goal-directed movement. The purpose of this clinical commentary is to present cardiopulmonary system considerations within a multi-physiologic systems approach to human movement after ACLR, including a clinically relevant review of the cardiopulmonary system, assessment strategies, and modes of cardiopulmonary training to promote effective, efficient movement. Level of evidence: 5

    A multi-systems approach to human movement after ACL reconstruction: the cardiopulmonary system

    Get PDF
    The cardiopulmonary system plays a pivotal role in athletic and rehabilitative activities following anterior cruciate ligament reconstruction, along with serving as an important support for the functioning of other physiologic systems including the integumentary, musculoskeletal, and nervous systems. Many competitive sports impose high demands upon the cardiorespiratory system, which requires careful attention and planning from rehabilitation specialists to ensure athletes are adequately prepared to return to sport. Cardiopulmonary function following anterior cruciate ligament reconstruction (ACLR) can be assessed using a variety of methods, depending on stage of healing, training of the clinician, and equipment availability. Reductions in cardiovascular function may influence the selection and dosage of interventions that are not only aimed to address cardiopulmonary impairments, but also deficits experienced in other systems that ultimately work together to achieve goal-directed movement. The purpose of this clinical commentary is to present cardiopulmonary system considerations within a multi-physiologic systems approach to human movement after ACLR, including a clinically relevant review of the cardiopulmonary system, assessment strategies, and modes of cardiopulmonary training to promote effective, efficient movement. Level of evidence: 5
    • …
    corecore