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Emissions of nitrous oxide and methane in North America
Abstract

Methane (CH4) and nitrous oxide (N,O) are the second- and third-most important long-lived
greenhouse gas species after carbon dioxide (CO,) in terms of radiative forcing. This thesis de-
scribes the magnitude, spatial distribution, and seasonality of N,O and CH,4 sources over North
America using atmospheric data. We also investigate the environmental drivers and/or anthro-
pogenic source sectors that can explain these emissions patterns. Overall, this thesis provides
information on the magnitude, distribution, and likely drivers of greenhouse gas emissions to
aid existing or future climate change mitigation policies in the US and Canada.

We estimate anthropogenic N,O and CH,4 emissions that greatly exceed most existing inven-
tory estimates. Our US budgets for N,O and CH, are approximately 2.8 and 1.5 times higher,
respectively, than inventory estimates from the US EPA. Much of the discrepancy in methane
appears to stem from oil and natural gas industry and agricultural emissions.

In contrast, we estimate natural CHy sources that are smaller than most existing process-based
biogeochemical models. These estimated fluxes have a spatial distribution centered around the
Hudson Bay Lowlands. Most existing models estimate fluxes that are far more spatially dis-
tributed across the Canadian shield. These estimates provide negative information on the spatial
distribution of fluxes relative to a spatially-constant model. We find that a simple model using
only three environmental variables can describe flux patterns (as seen by the atmospheric obser-

vations) as well as any process-based estimate.
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Introduction

Greenhouse gas emissions play a pivotal role in climate change, but the distribution of these
emissions from different sources across the globe is often poorly understood. This thesis focuses
on sources of nitrous oxide (N2O) and methane (CH,) estimated using atmospheric observations.

N,O is the third-most important long-lived greenhouse gas after carbon dioxide (CO;) and
CHy,4 (Butler, 2014). A significant fraction of N,O emissions occur in agricultural soils when ni-
trogen in fertilizer or manure changes chemical form and escapes to the atmosphere (e.g., Rahn
& Wahlen, 2000; Rockmann et al., 2003). Large uncertainties remain in knowledge of continental-
scale NoO emissions and the underlying soil processes. For example, existing inventories dis-
agree by a factor of five on total US emissions and on where the largest emissions occur — whether
in Towa or the Gulf Coast (European Comission, Joint Research Center (JRC)/ Netherlands Envi-
ronmental Assessment Agency (PBL), 2009; Tian et al., 2010).

In contrast to N,O, CHy is emitted to the atmosphere from a diverse array of sources, includ-
ing wetlands, agriculture, natural gas operations, and landfills (e.g., Ciais et al., 2013; Kirschke

et al,, 2013). Existing emissions inventories, however, provide little consensus on national-scale



US emissions, and these uncertainties have manifested recently in a contentious public debate
over hydraulic fracturing and natural gas extraction. Bottom-up anthropogenic inventories from
US EPA and EDGAR give totals ranging from 19.6 to 30 TgC yr’! (Olivier & Peters, 2005; US
EPA, 2013). The most recent EPA and EDGAR inventories report lower US emissions compared
to previous versions (decreased by 10% and 35%, respectively) (US EPA, 2013; European Comis-
sion, Joint Research Center (JRC)/ Netherlands Environmental Assessment Agency (PBL), 2009);
this change primarily reflects lower, revised emissions estimates from natural gas and coal pro-
duction.

Wetland methane estimates are as uncertain as anthropogenic inventories. Over time, biogeo-
chemical models of these fluxes have become increasingly sophisticated or complex. However,
these models still disagree by an order of magnitude over countries like Canada (e.g., Melton
et al.,, 2013a). Furthermore, the inputs into biogeochemical methane models, including maps of
soil moisture and soil carbon, are highly uncertain, as are the effects of those inputs on methane
fluxes (e.g., Melton et al., 2013a; Wania et al., 2013).

This thesis explores N,O and CH,4 emissions from a variety of sources across North Amer-
ica in order to determine the relative contribution of different human activities and to facilitate
improved projections of future atmospheric greenhouse gas concentrations. Effective reduction
strategies for greenhouse gas emissions depend upon reliable estimates of those emissions and a
means to track future changes.

In particular, the studies presented here answer these questions using atmospheric green-
house gas observations, a so-called ‘top-down’ approach. Atmospheric observations ‘see’ the cu-
mulative effect of emissions at the Earth’s surface. Emissions inventories, by contrast, often use
an accounting process to tally up individual sources or flux processes. These estimates are based
upon detailed emissions factors for individual processes. A challenge of this approach is that un-

certainties compound when estimates are summed over multiple source types and extrapolated



to national scale. Atmospheric observations provide an objective tool to determine whether the
sum of all sources in the inventory equals the total methane measured in the atmosphere.

Traditionally, bottom-up and top-down estimates have been difficult to reconcile because the
former relies upon detailed emissions factors and the latter often provides only aggregate emis-
sions totals. In this dissertation, we use atmospheric data to estimate more than just total emis-
sions but also to understand how and why these gases were emitted — a goal that bridges the
disconnect between biologists and government regulators who create the bottom-up models and
scientists who use top-down atmospheric data.

In addition to analyzing empirical data, the research presented here also explores new ways
to utilize limited, available greenhouse gas data. We further develop statistical and meteorolog-
ical modeling frameworks to extract the most information possible from a diverse set of atmo-
spheric, weather, economic, and land use data. For example, chapter 6 explores how to construct
inverse problems that have a known constraint (e.g., the emissions must be non-negative). An-
other chapter delves into the effects of spatially- and temporally-correlated atmospheric trans-
port errors on estimated greenhouse gas fluxes. In that study, we examined these errors in con-
text of CO,.

This thesis examines all of the questions posed above through seven individual chapters or
studies. Chapter one focuses on emissions of N,O while chapters two through five explore both
anthropogenic and natural methane sources. The last two chapters (six through seven) examine

two different facets of how to best utilize limited atmospheric greenhouse gas observations.



1

Regional sources of nitrous oxide over the United States: sea-

sonal variation and spatial distribution

This chapter originally appeared as a research article in the Journal of Geophysical Research — Atmo-

spheres. For the original article, refer to Miller et al. (2012b).

This chapter presents top-down constraints on the magnitude, spatial distribution, and season-
ality of nitrous oxide (N,O) emissions over the central United States. We analyze data from tall
towers in 2004 and 2008 using a high resolution Lagrangian particle dispersion model paired
with both geostatistical and Bayesian inversions. Our results indicate peak N,O emissions in
June with a strong seasonal cycle. The spatial distribution of sources closely mirrors data on fer-
tilizer application with particularly large N,O sources over the US Cornbelt. Existing inventories
for N,O predict emissions that differ substantially from the inverse model results in both sea-
sonal cycle and magnitude. We estimate a total annual N,O budget over the central US of 0.9 —

1.2 TgN/yr and an extrapolated budget for the entire US and Canada of 2.1 — 2.6 TgN/yr. By this



estimate, the US and Canada account for 12 — 15% of the total global N,O source or 32-39% of

the global anthropogenic source as reported by the IPCC in 2007.

1.1 Introduction

Nitrous oxide (N,O) plays a critical role in both stratospheric ozone depletion and climate change.
In the stratosphere, it can react with excited oxygen atoms to produce NO, radicals which, in
turn, can catalyze stratospheric ozone destruction (Nevison & Holland, 1997; Ravishankara et al.,
2009). Moreover, N,O is a potent greenhouse gas with a global warming potential of 300 (on a
100 year timescale) (Forster et al., 2007). With the continued decline of atmospheric CFC concen-
trations, N,O is now the third most important long-lived anthropogenic greenhouse gas in terms
of radiative forcing (0.173 W/m? in 2009, an 11% increase since 1998) (Butler, 2014).
Anthropogenic sources of nitrous oxide include agriculture, fossil fuel combustion, and biomass
burning (Commisssion, 2006; Denman et al., 2007). Isotopic N>O measurements suggest that
agriculture and associated fertilizer use are the largest anthropogenic N,O sources globally (Rahn
& Wahlen, 2000; Rockmann et al., 2003). The atmospheric lifetime of N,O is relatively long at
about 114 years, and the primary sink of N>O is loss in the stratosphere (Montzka, 2003). To-
tal annual global emissions (~17.7 TgN /yr) are approximately 40 — 50% higher than in pre-
industrial times and continue to rise (Denman et al., 2007). As a result, global N>O mixing ra-
tios have been increasing steadily by about 0.2 — 0.3% per year (about 0.73 + 0.06 ppb/year or 3.5
TgN/yr) (Hirsch et al., 2006).
Because of the long lifetime of N,O, spatial and temporal changes in N,O mixing ratios are
very small and remain challenging to measure accurately. For example, the seasonal cycle at
Mace Head, Ireland, is only 0.1% relative to the mean abundance (Hirsch et al., 2006). The com-

bination of a long lifetime, diffuse sources, and a low signal-to-noise ratio in the measurements



means that the N,O increment due to regional sources is very difficult to estimate and verify
(Hirsch et al., 2006). In addition, the percentage of nitrogen released as N,O after fertilizer appli-
cation is very uncertain and ranges from 0% — 7 % (Bouwman, 1996). The diversity of fertilizer
application processes and conditions results in emissions that show large spatial and temporal
fluctuations and are difficult to constrain. As a result, existing estimates of N,O emissions (both
magnitudes and seasonal trends) are highly uncertain (Hirsch et al., 2006; Kort et al., 2008, 2010,
2011). Current emissions estimates over North America, for example, may be too low by as much
as a factor of three (Kort et al., 2008, 2010).

The high degree of uncertainty in N,O emissions complicates efforts to regulate sources under
global and regional climate change agreements. At the global scale, the Kyoto Protocol included
N,O as one of the six greenhouse gases targeted for reductions. Within the US, several state and
regional regulations target N,O emissions as well (NEG /ECP, 2001; Western Climate Initiative,
2010). For example, the Midwestern Greenhouse Gas Reduction Accord, an agreement among
6 states in the midwestern US, recommends a 20% reduction in 2005 greenhouse gas emissions
by 2020. Advisory group recommendations include N,O as one of the six targeted categories of
species (Advisory group to the Midwestern Greenhouse Gas Reduction Accord (MGGRA), 2009).
Given uncertainties in emissions estimates that are ~20x larger than reduction goals, it is very
difficult at present to make reliable baseline inventories and track progress toward designated
targets.

Several existing studies provide global to regional-scale constraints on N,O emissions. Prinn
et al. (1990), Hirsch et al. (2006), Huang et al. (2008), and Kort et al. (2011) derived top-down
emissions constraints over large global regions. More recent studies provide regional-scale emis-
sions estimates over Europe (Manning et al., 2003; Thompson et al., 2011; Corazza et al., 2011;
Manning et al., 2011). Top-down estimates over North America are more limited. Kort et al.

(2008, 2010) used tall tower and aircraft data to make continental-scale improvements to existing



emissions estimates for North America. Multiple studies consistently find northern hemisphere
emissions that are significantly higher than existing inventories (Hirsch et al., 2006; Huang et al.,
2008; Kort et al., 2008, 2010).

The present paper provides detailed spatial and temporal information on the magnitude of
N,O emissions over the United States at much finer resolution than previously possible. We
combine data from a network of tall tower measurements with high-resolution atmospheric sim-
ulations to provide regional-scale emissions estimates in time and space, representing important

baseline information for greenhouse gas regulation.

1.2 The Model-Data Framework

1.2.1 Background to the STILT model

This study relies on STILT, the Stochastic Time-Inverted Lagrangian Transport Model, for simu-
lations of atmospheric N,O concentrations. STILT is a particle-following model based strongly
on the HYSPLIT model (Draxler & Hess, 1998). STILT releases an ensemble of imaginary air
particles from a receptor point, a single location in space and time. For our study, we set up

the model to send 100 particles 10 days backward in time following the winds in an assimi-
lated mesoscale meteorological model. The surface sources that these particles encounter are
used to calculate the contribution of continental sources seen at the receptor point. In particu-
lar, STILT assumes that all surface sources will be well-mixed up to half the modeled boundary
layer height. Particles below this height see influence from surface sources while those above do
not. STILT then calculates an influence footprint based on the number and duration of particles
in this surface layer. The influence footprint, when multiplied by an emissions inventory and
summed over all geographic regions, provides an estimate of the continental source signal seen

at the receptor. This continental signal is added to a modeled boundary condition (i.e. — the mix-



ing ratio in ‘clean’ air before reaching North America) to estimate the total mixing ratio seen at
the receptor point. The very detailed rendition of mixing ratio fluctuations provided by STILT
can be validated against individual measurements taken at the receptor (usually a tall tower

or aircraft mission), providing a powerful framework for assessing upwind surface or volume
sources. Previous studies have applied STILT to a wide range of atmospheric trace gases, includ-
ing CO,, CO, methane, and N,O (i.e. — Gerbig et al., 2003; Lin et al., 2003; Lin & Gerbig, 2005;
Matross et al., 2006; Kort et al., 2008; Miller et al., 2008; Gourdji et al., 2010; Thompson et al.,
2011). Lin et al. (2003) and Gerbig et al. (2003) provide a detailed explanation of STILT model

theory and structure.

1.2.2  Underlying meteorological drivers

STILT simulations in this study use Weather Research and Forecasting (WRF) assimilated me-
teorological fields version 2.2 (Skamarock et al., 2005; Nehrkorn et al., 2010) and the Brazilian
Regional Atmospheric Modeling System (BRAMS v. 3.2) (Pielke et al., 1992; Cotton et al., 2003;
Sanchez-Ccoyllo et al., 2006). BRAMS simulations (45-km resolution) were only available for the
year 2004. The limited STILT-BRAMS runs are complemented by STILT-WRF runs for all time
periods.

WRF model simulations use a nested meteorological grid resolution; 10-km resolution wind
fields drive particle trajectories over most of the continental US and southern Canada. 40-km res-
olution wind fields drive trajectories as the particles travel to more distant regions. This nested
wind field structure affords higher fidelity source attribution near the receptor while still main-
taining reasonable computational costs. Nehrkorn et al. (2010) provide a full description of the
WRF simulations used in STILT.

BRAMS wind fields (v. 3.2) were based strongly on the Regional Atmospheric Modeling Sys-

tem (RAMS) (Cotton et al., 2003) with several updates: new parameterizations for convection

8



(shallow and deep) and turbulence along with modified diagnostic outputs to ensure mass con-
servation to very high accuracy. All simulations apply a mass conservation fix from Medvigy

et al. (2005). STILT parameterizes boundary layer turbulence as a Markov chain process (Lin

et al.,, 2003), and both WRF and BRAMS use a Grell - Devenyi scheme for convection (Grell &
Devenyi, 2002). BRAMS estimates boundary layer height in accordance with Vogelezang & Holt-
slag (1996), and WREF uses a Yonsei University Scheme (Fast, 2005). These two approaches give

somewhat different estimates for PBL height and exchange rates (see Section 1.4.1).

1.2.3 Emissions inventories

We pair the STILT model with four different N,O emissions inventories: EDGAR v. 4.0, EDGAR
32FT 2000, GEIA, and the Dynamic Land-Ecosystem Model (DLEM) (see Fig. 1.1). The EDGAR
inventories include anthropogenic N> O sources (including sources from agriculture) on a 0.1° by
0.1° and 1° by 1° longitude-latitude grid, respectively, for v. 4 and 32FT2000 (Olivier & Peters,
2005; European Comission, Joint Research Center (JRC)/ Netherlands Environmental Assess-
ment Agency (PBL), 2009). EDGAR v. 4, incorporated into STILT at a %o longitude by %O latitude
resolution, is the more recent, higher-resolution update to EDGAR 32FT2000; while the newer
inventory has a similar spatial distribution, the estimated magnitude of fluxes is lower. GEIA
incorporates both anthropogenic and natural sources, also on a 1° by 1° grid (Bouwman et al.,
1995). All three inventories are constant in time.

DLEM, a process-based biogeochemical model, estimates N,O from natural sources and from
agriculture (Tian et al., 2010, 2011). The N,O model simulates nitrification and denitrification
processes as a function of ammonium and nitrate concentrations, soil temperature, and soil mois-
ture. According to Tian et al. (2010), DLEM model parameters are then optimized using several
Ameriflux sites. Daily emissions estimates are available from 2000 — 2008 at a 32 km x 32 km res-

olution (incorporated into STILT on a %O by %O longitude latitude grid) . For all STILT simula-
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Figure 1.1: Graphical plots of the different N,O emissions inventories for 2000. Because DLEM is a daily
inventory, the plot above shows average fluxes for May — August 2000. EDGAR v.4 and GEIA (not shown)
have similar distributions to EDGAR32 but smaller magnitude (particularly EDGAR v.4).
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tions with DLEM, we supplement the inventory with anthropogenic source categories from the

EDGAR32FT2000 inventory (i.e. — fossil fuel use, waste handling, water treatment, etc.).

1.2.4 Model boundary condition

The model boundary condition represents N,O mixing ratios in air that is advected from the Pa-
cific or Arctic Oceans before entering North America. We construct an empirical boundary based
on measurements from the NOAA cooperative air sampling network. We use monthly mean dry
air mole fractions from 6 monitoring stations (Pacific Ocean stations 5°, 10°, 15°, 20°, 25°, and
Barrow, AK) to build a time-varying interpolated boundary at 145° W longitude from the equa-
tor to the North Pole. Each particle in the ensemble is assigned a boundary condition mixing ra-
tio based on its ending latitude (projected onto the 145° W boundary). Trajectories that end north
of 60° latitude and east of —120° longitude are assigned mixing ratios from a northern bound-
ary condition, constructed from measurements at Alert, Canada, and Summit, Greenland, sta-
tions. The estimated boundary condition value assigned to each trajectory is averaged over the
entire ensemble to produce the final modeled boundary. This latitudinally, zonally, and tempo-
rally varying boundary condition allows the modeled background concentration to change when
changing synoptic conditions bring air from different regions of the globe. In contrast to an em-
pirical boundary, we could have used the output from a global chemical tracer model (CTM) for
the boundary condition. However, known shortfalls in existing inventories and uncertainties in
stratosphere exchange over longer time scales results in CTM N,O estimates that poorly match
measurements (Kort et al., 2011).

Data are insufficient to create a boundary condition for the southern edge of the model do-
main. Weekly N,O measurements at Barbados in fall 2008 suggest that the boundary concen-
tration estimated for the WKT tower using our Pacific boundary condition could be too low by

up to ~0.2 ppb. A low estimated boundary at WKT would imply a higher N,O increment from
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continental sources. As a result, the flux estimates presented here could consequently be biased
slightly high over the southern US, likely by no more than 25%.

The STILT model does not explicitly account for dilution of N,O due to the influence of strato-
spheric air. Stratosphere-to-troposphere exchange reaches a maximum during fall through spring
and occurs at a much smaller magnitude during summer (Holton et al., 1995; Sprenger & Wernli,
2003). This exchange could influence concentrations at the receptor sites in two very general
ways: through broad-scale exchange that becomes well-mixed in the troposphere and through
specific “deep exchange” (stratospheric intrusion) events. Broad-scale exchange that becomes
well-mixed should be captured by the measurement-based boundary condition. It would be
very difficult to account for deep exchange events, but several indicators might downplay the
importance of these events on eventual surface source constraints. First, deep exchange events
reach a maximum over the Gulf of Alaska and southern Greenland, areas far from anticipated
N,O sources (Sprenger & Wernli, 2003). Secondly, any depletion due to deep exchange would
result in low measurements and modeled concentrations that are too high. This is the opposite of
what we see in the actual model (see Section 1.4.4). Finally, the measurements rarely drop below
the adjusted modeled boundary condition, suggesting a lack of strong stratospheric influence at

the surface sites (e.x. — Figs. 1.4, 1.2).

1.2.5 Data overview

We use two different types of measurement data in the analysis of N,O emissions: continuous
measurements from LEF tower in Wisconsin and daily flask measurements from an ensemble of
tall tower sites (Fig. 1.3).

Continuous hourly-averaged measurements of N,O are available only at NOAA’s LEF tower
site for 5 months (May — Oct.) in 2004. Despite the limited time frame, the data nonetheless pro-

vide a high resolution test to validate the STILT-N,O model. Measurements at LEF were taken
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Figure 1.2: An example of the STILT model result at LEF tower with both the a priori and a posteriori
EDGAR32FT2000 inventories.
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Figure 1.3: The contour lines indicate the regions that contribute 75 and 90% of the mixing ratio signal
seen at each of the tall tower sites. The plot reflects the months of May through August, 2008, and was
constructed using the EDGAR32FT2000 emissions inventory. The tall tower ensemble sees influence from
N,O sources over much of the central US.
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using a gas chromatograph (Hurst et al., 1997, 1998) and had an approximate uncertainty of 0.6
ppb. In order to mitigate significant noise in the hourly-averaged data, we apply a 4th order,
22-point Savitsky-Golay moving average filter (Savitzky & Golay, 1964). The filter effectively
preserves the magnitude of peaks and troughs on synoptic time scales in the time series and sub-
stantially decreases noise.

In addition to continuous tall tower measurements, we also draw on a network of daily flask
measurements from 4 tall tower sites during 2008. These sites include LEF in Park Falls, Wiscon-
sin (244 m above ground level); WBI in West Branch, Iowa (379 m agl); WKT in Moody, Texas
(457 m agl); and BAO in Erie, Colorado (300 m agl). The daily flask dataset begins in 2008 with
limited data for 2007. We conduct model simulations for the tall tower ensemble over 2008 when
both data and meteorological simulations are available. All flask samples were measured using
a gas chromatograph and electron capture detector and had a reproducibility of approximately
0.3 ppb. For both hourly and daily datasets, the measurement uncertainty is 30 — 60% of the typ-
ical signal from continental surface sources, making it particularly challenging to derive regional

source constraints.

1.3 Emissions Estimation Methods

1.3.1 Simple inventory optimization

We first discuss data analysis using a simple optimization of each emissions inventory (i.e. —
GEIA, EDGAR, and DLEM). We plot modeled mixing ratios against measurements and fit a
linear regression. Variability in the modeled and /or measured signals should result from the
transport of varying sources from different regions. Hence, the regression slope provides an ap-
proximate corrective scaling factor for each emissions inventory based on the array of model

results and measurement sites. In addition, the intercept of the regression can be interpreted as
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an additive correction to the modeled boundary condition. We use a reduced major axis (RMA)
method (Miller & Kahn, 1962) to produce a single scaling factor for each inventory (calculated
over all available towers) for each month in 2008 and for each month of the available 2004 LEF
dataset (using WRF and BRAMS winds separately). An RMA regression accounts for uncorre-
lated variance in both the x and y axes. The surface source signal over the central US is domi-
nated by fluxes from agriculture (globally ~4x the fossil fuel source) (Denman et al., 2007); agri-
cultural and urban sources are also co-located in some regions, and therefore we cannot reliably
decouple different source types.

The RMA regression provides the most straightforward snapshot of seasonality in N,O emis-
sions. Significant gaps in the data occur at several towers in 2008, specifically in the winter,
spring, and fall months. As such, it is difficult to produce a reliable spatially-variant inversion
for time periods other than summer of 2008. Therefore, we use the regression method to estimate
month-by-month constraints over all of the tower sites.

We apply a boundary correction to each monthly inversion simulation based on the regression
intercept. The tall tower data that most strongly constrains the boundary correction are nearly
disjoint from data points that constrain the sources, so this procedure has little effect on our main
results. If we do not apply a boundary condition correction, the inversions produce obvious bias
in the model-data comparisons and unrealistic spatial distributions of the flux fields (e.g. — large

emissions over the sea or distant regions).

1.3.2  Geostatistical and Bayesian inversions

We use both a geostatistical inversion (Snodgrass & Kitanidis, 1997; Michalak et al., 2004) and the
more conventional Bayesian approach (Rodgers, 2000). The Bayesian inversion incorporates an
a priori emissions inventory, along with the measurements, model results, and uncertainty es-

timates. The resulting emissions inventory optimization (the a posteriori solution) reflects both
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the a priori estimate and the model / measurements (Rodgers, 2000). In many applications, the

a priori emissions estimate provides important, independent information for the inversion, and
the inversion improves upon this initial best guess. In other applications, it can be useful to es-
timate trace gas emissions more directly from the atmospheric data without the help of an a pri-
ori estimate (i.e. — making as few initial assumptions as possible). The geostatistical approach

is an inversion that can do just that by using a non-informative prior. A geostatistical inversion
can be most useful when a priori inventories differ substantially in either magnitude or spatial
structure, as is the case for N»O, indicating significant errors in the spatial distribution of emis-
sions. In this case, the a posteriori solution will vary arbitrarily depending on the highly sub-
jective choice of the prior. It makes sense to learn as much as possible about N,O fluxes before
convolving the results with the influence of a potentially-erroneous prior. When different priors
give very disparate flux estimates, the geostatistical inversion can inform the choice of prior for
a Bayesian inversion or help to describe the spatial distribution of emissions using information
directly from atmospheric data.

In this study, the geostatistical approach helps us examine spatial patterns in fluxes indepen-
dent of disparate a priori inventories (i.e. - DLEM versus EDGAR32FT2000). We conducted sep-
arate geostatistical inversions for each month during the peak period of fluxes (May — July 2008)
on a resolution of 1° lat. x 1° lon. to minimize spatial aggregation errors. We focus on the sum-
mer time period because the flask dataset was much more sporadic at other times of year. Sec-
tion 1.3.3 provides a more mathematically rigorous description of the geostatistical approach.

We also conducted comparable monthly Bayesian inversions during the same time period
(May — July 2008). We use the geostatistical method to help inform our choice of a priori inven-

tory and then use the Bayesian method to improve on this best initial inventory estimate.
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1.3.3 Inversion Mathematics

The STILT trace gas model can be written in linear form as follows (Gerbig et al., 2003):

z=Hs+b+¢ (1.1)

zisann x 1 vector of measurements at the receptor location(s) (in this case, from a tall tower),
sisanm x 1 vector of fluxes over the entire model domain, and bis ann x 1 vector that rep-
resents the model boundary condition. H, the Jacobian matrix (dimensions n x m), relates the
surface fluxes to the continental source signal as measured at the tower. Each column of H de-
scribes the statistical influence of fluxes in a certain grid box on the tall tower site (also known
as the “influence footprint”). In other words, the influence footprint converts the emissions in-
ventory from a flux to a mixing ratio increment seen at the receptor. This footprint is calculated
based on the number of particles that pass over the grid box and the amount of time the parti-
cles spend in the box. Hs (n x 1) represents the contribution of continental sources to the mixing
ratio at the receptor (in ppb). e is the model-data mismatch: error caused by model transport,
model resolution, uncertainties in the measurements, and boundary condition uncertainties (e.g.
— Gerbig et al. (2003), Matross et al. (2006), or Gourdji et al. (2010) for the STILT model).

The solution to the inverse problem minimizes the chi-squared cost function, somewhat sim-
ilar to a weighted sum of squares approach. Equations 1.2 and 1.3 give the cost function for the

Bayesian and geostatistical inversions, respectively.

J(s) = %(z ~ Hs)TR~(z — Hs) + %(s 5)TQ (s — 5) (12)

J(s.B) = 5=~ Hs)'R™"(z ~ Hs) + 2(s ~ X§)'Q (s ~ Xp) (13)
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R is the n x n model-data mismatch covariance matrix, and Q is the m x m a priori covariance
matrix.

The two inversion approaches differ in their treatment of the a priori model. The Bayesian
method determines the solution with the maximum probability given the prior estimate and the
observations and their range of uncertainties, defined by R and Q, respectively (Rodgers, 2000).
The geostatistical method does not include an a priori inventory (s,) but instead uses a model of
the mean (XB). Each column of the matrix X (m x p) can describe possible spatial trends in the
data. Bisap x 1 vector of unknown drift coefficients that scale the columns of X. This model of
the mean could, for example, include information such as land use patterns or population den-
sity (i.e. — “auxiliary variables”; see Gourdji et al. (2008)). In this study, however, we use do not
use external information in the model of the mean. In other words X is an m x 1 vector of ones,
an uninformative prior. In this case, the unknown value of B is the a posteriori mean of the flux
field. We want to learn as much as possible about the fluxes from the atmospheric data alone
without the aid of any prescribed spatial distribution. Instead, the geostatistical method incorpo-
rates broad-scale information within the covariance matrices about the spatial correlation struc-
ture of the fluxes. The diagonal elements of Q define the spatial variance of the fluxes, and the
off-diagonal elements of Q describe the anticipated spatial covariance of the fluxes (e.g. — Snod-
grass & Kitanidis, 1997; Michalak et al., 2004; Mueller et al., 2008).

For both inversions, we include the 90% influence region (see Section 1.4.1) in the inversion
area as well as all land area further west. The data do not fully constrain emissions as far away
as the West Coast, but we included the West to avoid biasing the a posteriori flux field due to the
cumulative effect of distant emissions. We excluded water bodies from the inversion. Globally,
the ocean is a significant source of N,O, diffusely spread over large areas (Nevison et al., 2004;
Denman et al., 2007). However, any fluxes assigned to the ocean by the inversion would more

likely reflect boundary condition uncertainties than actual sources and our boundary condition
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correction should account for the effects of any broad-scale coastal upwelling fluxes.

The analytical solutions to both Bayesian and geostatistical inversions are calculated via a sys-
tem of linear equations. The solution to the Bayesian approach for the STILT model is described
in Gerbig et al. (2003) and Miller et al. (2008), and the solution to the geostatistical inversion is

described in detail by Snodgrass & Kitanidis (1997) and Michalak et al. (2004).

1.3.4 Covariance matrices

The covariance matrices (Q and R) provide crucial information that describes the structure of
the a posteriori flux field and/or the relative uncertainties in the inversion inputs. These matri-
ces must be estimated independent of the inversion and are often inferred from the atmospheric
data itself (Kitanidis & Lane, 1985; Kitanidis, 1995; Michalak et al., 2005). Mathematically, the

individual elements of R and Q are defined as follows:

t. .
Rij(tijlor, tr) = Ozzzew(—tlf;) (1.4)

B
Qij(hijlog, 1) = ogexp(——7) (1.5)

0%, the diagonal elements of R, represent the variance of the errors caused by model-data mis-
match. This includes uncertainties due to the measurements, the forward model, model repre-
sentation (ex. — aggregation of discreet flux regions), and uncertainties in the boundary con-
dition. In this case, we estimate a single model-data mismatch error over all towers for each
month. The off-diagonal elements are the covariances which decay exponentially in time (t; ;)
according to the temporal decorrelation in model-data mismatch errors (tg). We constructed a
first order autoregressive model on the difference between model and measurements and found

a decorrelation time of 4-10 hrs. for hourly data at LEF with the WRF model (depending on the
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data interpolation method used). This is smaller than the daily measurement frequency in the
ensemble data, so we do not include temporal correlations in model-data mismatch (off-diagonal
elements of R). We also assume zero error correlation among observations at different tower
sites.

The a priori covariance matrix takes on a similar form. For the geostatistical inversion, the di-
agonal elements (azQ) give the anticipated variance of the fluxes, and for the Bayesian inversion,
they describe the uncertainty in the a priori inventory. The off-diagonal elements of Q decay ex-
ponentially with distance (h; ;) according to the decorrelation length parameter (/). In the case of
the geostatistical inversion, I describes spatial correlation in the flux field while for the Bayesian
inversion, I describes the spatial correlation of uncertainties in the a priori inventory. Spatial cor-
relation becomes negligible at distance 31.

We infer most of the covariance matrix parameters from the atmospheric data itself using
Maximum Likelihood (ML) and Restricted Maximum Likelihood (RML) methods. In this case,
we apply the RML method to infer geostatistical inversion parameters (Kitanidis, 1995; Snod-
grass & Kitanidis, 1997) and the ML method to infer Bayesian inversion parameters (Kitanidis
& Lane, 1985; Michalak et al., 2005). These closely related techniques provide objective ways to
infer any number of inversion parameters. The most likely parameters are those that minimize
a given cost function and are normally estimated using an iterative Gauss-Newton algorithm.
ML and RML ensure that the reduced chi-squared value of both the model / measurements and
fluxes are close to one. This implies that the errors in the a posteriori model are consistent with
those estimated by the covariance parameters (e.g. — Michalak et al., 2005). It is important to
note, however, that ML and RML can produce unreliable inversion parameters when either the
data are sparse or the model/ measurement errors are large (Mueller et al., 2008; Gourdji et al.,
2010).

This latter concern becomes important in the inversion setup here. In cases where we can-
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Table 1.1: Covariance matrix parameters for the geostatistical and Bayesian inversions.

O-RiMAY O-RiJUN O-RiJUL [ (km) O-Q
Geostatistical 0.71 £0.05 0.97+0.05 0.70+0.04 816+313 (4.5+3)x10*
Bayesian 0.72+0.05 0.99+0.05 0.73+0.04 816+313 (3.7+2)x 10*

not infer inversion parameters from the atmospheric data, we infer these values from auxiliary
datasets. For example, we assume that the posterior fluxes and errors in the a priori inventory
will be correlated over a length scale (I) similar to that of agricultural land use patterns (inferred
from cropland maps using RML in kriging form) (Mueller et al., 2008; Ramankutty et al., 2008).
Existing emissions inventories of N,O, corrected in magnitude in accordance with Kort et al.
(2008), provide an estimate of o for the geostatistical inversion (again using RML in kriging
form). Additionally, we use the difference between the standard and corrected inventory from
Kort et al. (2008) for o in the Bayesian setup. Table 1.1 lists the full set of parameters used in the

geostatistical and Bayesian setups.

1.4 Results and Discussion

1.4.1 Model results — an overview

The STILT model appears very adept at reproducing high resolution N,O concentration data
for a range of different receptor sites. The hourly data from LEF Tower in 2004 demonstrate
the model’s ability to reproduce high resolution measurements (see Fig. 1.4). In this case, we
ran the model using both the WRF and BRAMS meteorological drivers. STILT achieves model-
measurement correlation as high as R = 0.76 (for EDGAR32FT2000), though correlations for

other inventories can be lower (R = 0.48 for DLEM) (see Table 1.2). The time series in Fig. 1.4
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Table 1.2: Emissions inventory correction factors and model-measurement correlation coefficients for 2004
calculated using an RMA regression based on hourly LEF tower nitrous oxide measurements.

Inventory Meteorology Inventory correction factors R
May June July August Sept. Oct.
EDGAR32FT2000 BRAMS 25+02 2.6+0.1 1.5+0.1 1.5+0.1 1.3£0.1 14+£0.1 0.76
WRF 37£02 34+02 1.6+02 1.9+0.2 1.2+£0.1 14+£0.1 0.73
EDGARvV4 BRAMS 44+03 48+03 2.6+02 27=+0.2 23£02 25+£02 0.76
WRF 62+03 6.1+£04 27+£0.2 35+£03 22+£02 24402 074
GEIA BRAMS 3702 41+02 25+02 23+02 2.0+£02 19+0.1 0.76
WRF 51+£03 55+04 24+£02 29+03 1.8£02 20+£02 0.73
DLEM BRAMS 1.7£0.1 1.1£0.1 090+0.1 0.66+0.06 0.50+0.05 1.3+0.1 0.52
WRF 22402 1.3+0.1 0.85+0.06 0.94+0.09 0.63+0.06 1.1+0.1 0.48

displays the model result for both the BRAMS and WRF-driven models after optimization.

Before fully discussing the source optimization results, it is first important to highlight the dif-
ferences in STILT model runs with BRAMS versus WRF meteorological drivers. In general, the
BRAMS runs produce a slightly better model-measurement fit than WRF (R = 0.76 and 0.73, re-
spectively, for EDGAR32FT2000), though this difference in fit is only significant in the cases of
EDGAR32 and GEIA (p = 0.01 in both cases). Secondly, when using the same flux fields, STILT-
WREF runs produce modeled mixing ratios that are systematically lower than those produced by
STILT-BRAMS, statistically significant for all inventories. This difference appears to stem from
the fact that particle trajectories in WRF-driven simulations reach greater altitudes more quickly
than in BRAMS simulations and therefore see the influence of surface sources over a shorter in-
terval. For example, in Fig. 1.5, the average influence footprint of WRF and BRAMS simulations
is initially the same. However, the surface influence drops to lower values on days 2—4 for WRE,
likely because particles move out of the planetary boundary layer (PBL) a bit faster, and thus
lower mixing ratios modeled at the receptor. During the first day, and in the far field, the foot-
prints are similar and the overall mean footprints differ by 15-20%.

WRF and BRAMS also display different nighttime mixed layer heights (~30 m for WRF and
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Optimized Model Results for Hourly Observations at WLEF Tower (2004)
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Figure 1.4: STILT model results for hourly observations at LEF Tower in Park Falls, WI, with two different

meteorological drivers. Each result is optimized with a reduced major axis regression and smoothed with
a Savitsky-Golay filter.

24



Mean Influence Footprint

To]

pag

o e ® WRF

S BRAMS
L]
T o °
= o
g2 79 o
o o 3
ke Yy ° 3
3 e o o e
c [ ] 4
o %o

S 3 o &S
= o \ L E eeer &
=27 s X AR SN

o g """'

WhHR .
° L)

o

S

S -

o I I I I I I I I I I

1 2 3 4 5 6 7 8 9 10
Time away from WLEF tower (days)
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250 m for BRAMS). STILT can set systematically different nighttime mixed layer heights, and
differences in estimated concentrations among model versions with different nighttime mixed
layers appears to be minimal. Resolution of the discrepancy in particle heights between WRF
and BRAMS is beyond the scope of this paper but would be a significant subject to improve the
transport model uncertainties.

In addition to differences in meteorology, we also examined possible differences in the model
during the afternoon versus nighttime at LEF in 2004. We optimized mid-afternoon (18 — 23
UTC) and nighttime (6 — 14 UTC) data points separately using the RMA regression for each
month and each meteorological driver. The inventory correction factors were usually similar,
within 5% for afternoon versus nighttime measurements and almost never differed by more than
15%. Evidently, agricultural sources affecting LEF are large area sources and are dominated by
synoptic-scale flow.

The emissions constraints presented here apply mostly to the Great Plains corridor and west-
ern Great Lakes of the United States. Figure 1.3 shows the mean “regions of influence” for the
2008 tall tower ensemble model runs. At each geographic grid square, we multiply the footprint
by the EDGAR 32FT2000 emissions inventory. The result is the mixing ratio increment that each
grid cell contributes to the measured signal at the tall tower site. The contour lines provide an
estimate of the geographic regions that contribute 75 and 90% of the mean trace gas signal seen
at the tall tower sites. Figure 1.3 shows that the 2008 tall tower ensemble is most sensitive to
fluxes across the central corridor of the United States. A similar plot for the 2004 LEF dataset
(not shown) produces a region of influence that covers the corn belt and northern plains states.
Hence, the model inversions that follow in this paper predominantly provide constraints for the

central US.

26



Table 1.3: Emissions inventory correction factors for 2008 calculated using an RMA regression based on an
ensemble of tall towers.

Inventory  Inventory correction factors

Jan./Feb. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
EDGAR32 1.1+0.1 2.6+04 28+04 54+£06 35+04 22+03 1.5+0.3 1.1+£0.2 1.1+£0.2 13+£0.2
EDGARv4 13+02 4.1+0.7 51+07 101+12 57+07 3.8+0.5 1.14+£02 1.0+0.2 1.1+£0.2 1.8+0.3
GEIA 1.9+02 3.1+05 3.0+05 45+07 39+06 2.0+£03 2.1+04 14+£0.2 1.2+02 1.6+0.2
DLEM 33+04 29+05 23+04 21+03 09+0.1 0.29+0.04 0.88+0.18 0.83+£0.13 1.2+0.2 49+0.7

1.4.2 Seasonality of N,O Emissions

We construct a reduced major axis regression for the 2008 daily tall tower ensemble data in order
to make broad monthly corrections to existing inventories (see Table 1.3). Figure 1.6 shows the
monthly emissions inventory corrections taken over the entire ensemble of all tower sites. Note
that January and February are lumped together because there were only 15 days of model runs
for the former month. Also, we did not compute an inventory correction for March because two
of the four towers did not report any data.

The results from the entire ensemble provide important information about the seasonal cy-
cle of N,O over the central US in 2008. Note that since DLEM is a daily inventory, it includes
estimated seasonality while GEIA and the EDGAR inventories only provide yearly emissions
totals. Our study shows strongly seasonal fluxes that peak in June and fall off at similar rates on
either side of the peak. The scaling factors for DLEM represent corrections to the seasonality al-
ready included in the inventory. These scalers indicate that DLEM overestimates fluxes during
late summer relative to other months and slightly underestimates sources early in the year. The
DLEM adjustment for December is anomalous. The inventory in December is 25% lower than in
either November of January, and inventory sources during this month shift somewhat eastward,
explaining the anomaly at least in part.

Modeled footprints change slightly from one month to another, and some months lack mea-
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Figure 1.6: Corrective emissions inventory scaling factors produced by the RMA regression for the ensem-
ble of 2008 tall tower data.
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surements from one or more towers. Hence, scaling factors for each month could be weighted
toward certain regions because of missing towers or seasonal changes in synoptic transport. As a
result, the above constraints represent both seasonal changes in surface sources and any artifacts

from data availability and seasonal footprint variations.

1.4.3 Location of N,O Emissions

Different N,O emissions inventories exhibit very different spatial patterns (see Fig. 1.1). EDGAR
inventories place the largest sources over the US Cornbelt (i.e. — Iowa, Illinois, etc.) while DLEM
places high emissions in more westerly (ex. — Kansas and Nebraska) and southerly areas (ex. —
Texas, Arkansas, Kansas, etc.). The geostatistical inversion provides a very transparent way to
learn about the spatial distribution of the fluxes based on atmospheric data independent of exist-
ing emissions inventories. We conducted the geostatistical inversion for three different months
(May - July, 2008) using STILT-WRF.

Figure 1.7 shows the a posteriori flux fields for May, June, and July, along with associated a
posteriori uncertainties as estimated by the geostatistical inversion. We conducted the inversion
over a large region that includes most of the continental US and Canada but show results only
for the area within the 75% influence region of the tower sites (see Fig. 1.7). The results of the
inversion strongly indicate large N,O sources over the US Corn Belt (i.e. — Iowa, Illinois, etc.).
This source region continues to the northwest into North Dakota with a diminished magnitude,
and emissions taper off quickly moving westward into Colorado, Wyoming, and the western
Plains States.

With limited atmospheric data, the Bayesian inversion cannot fully correct discrepancies in
spatial distribution among inventories. In this case, the geostatistical inversion can inform our
choice of a priori inventory. Based both on the geostatistical simulations and the 2004 measurement-

model correlations, we select EDGAR32FT2000 as the best a priori inventory for the Bayesian
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Figure 1.7: Monthly a posteriori fluxes and associated uncertainties (a posteriori standard deviations)
estimated for the geostatistical inversion. This figure is plotting using different colors from Fig. 1.1 and on
different scales to better highlight spatial trends.
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Table 1.4: N,O budget information for 2004 and 2008 datasets for the inversion region shown in Fig. 1.7
(in TgN/month). Note: The ranges in 2004 and 2008 RMA reflect different inventories and meteorological
drivers while 2008 geostatistical- and Bayesian-derived budgets include a posteriori uncertainties calcu-
lated by the respective inversions.

May June July Aug. Sept. Oct.
LEF Tower 2004 (RMA) 0.12-0.18 0.12-0.19 0.073-.089 0.073-0.11 0.056—0.068 0.065—0.075
Ensemble 2008 (RMA) 0.11-0.15 0.16—-0.29 0.14-0.17 0.070-0.11 0.032-0.074 0.031—-0.054

Ensemble 2008 (Geostatistical) 0.11 +£0.08 0.18 £0.08 0.13 £0.07
Ensemble 2008 (Bayesian) 0.11+0.07 0.18+0.06 0.13+0.06

inversion. The EDGAR inventories and GEIA place major sources over the Corn Belt, in agree-
ment with the geostatistical simulations, while DLEM places the largest sources elsewhere. The
EDGAR and GEIA inventories also produce the highest model-measurement fit (R?), and EDGAR32FT2000,

in specific, requires less magnitude correction than either GEIA or EDGAR v. 4.

1.4.4 Magnitude of N,O Emissions

The following section details the results of the Bayesian inversion to improve upon existing
N,O emissions inventories and details estimated emissions budgets from the variety of statis-
tical methods. While the geostatistical setup aimed to discern large scale spatial patterns, the
Bayesian setup described here leverages the best existing inventory to produce a more spatially-
resolved estimate of fluxes. The inversion was conducted for May, June, and July, the months
with peak N,O fluxes and with nearly complete tall tower data sets. Figure 1.8 plots the EDGAR32FT2000
a posteriori inventory from the Bayesian inversion, and Fig. 1.2 shows an example of the mod-
eled time series from the LEF tower. The results look somewhat similar to the geostatistical
setup but are less dispersive and have more spatial detail.

The inversions and regressions suggest sources that are significantly larger than in either
EDGAR or GEIA for nearly all geographic regions and times of year. Interestingly, estimated

emissions in the newest release of EDGAR (v. 4) are lower than previous releases, requiring even
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Figure 1.8: The a posteriori source estimates for N,O using the EDGAR32FT2000 inventory in a Bayesian

inversion framework (for May — July 2008). Each month is plotted on a different scale to better highlight
spatial patterns.
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Table 1.5: The percentage of a priori N,O fluxes in the US and Canada that lie within the inversion region
as displayed in Fig. 1.7.

EDGAR32 EDGAR v.4 GEIA DLEM
51% 48% 40% 39%

larger modification. Table 1.4 displays monthly N,O budgets from the inversions and RMA re-
gressions for both 2004 and 2008. Using the RMA regression for the 2008 ensemble of tall tower
sites, we estimate an annual N,O budget of 1.0 - 1.2 TgN/yr for the inversion region. If we di-
vide these results by the percentage of fluxes in the inversion region (see Table 1.5), we can ex-
trapolate to the entire US and Canada. The resulting budget estimate for the United States and
Canada is 2.4 — 2.6 TgN /yr. This range of estimates reflects the results of different starting in-
ventories (the EDGAR and GEIA inventories). The different methods produce slightly different
budget estimates, in some part due to uncertainties in the boundary condition. The inversions,
for example, apply a single boundary condition correction for the entire summer period whereas
the regressions calculate a unique intercept for each month.

Differences in the meteorological drivers modestly widen the uncertainty bounds on the bud-
get estimate. Optimal fluxes on average were 12% lower when using BRAMS. The mean scaling
factor for EDGAR 2000 over the year is 2.2 for WRF and 1.8 for BRAMS. If we extrapolate to the
2008 dataset, this result suggests that BRAMS would yield a budget of ~1 TgN/yr over the cen-
tral US and ~2.2 TgN/yr over the US and Canada.

The budget numbers presented here compare well to those estimated in previous top-down
studies over North America, notably Kort et al. (2008, 2010). These studies estimated a US and
Canada N,O budget of 0.23 TgN/month for spring and summer months in 2003 and 2004. This
compares to a peak June US and Canada budget of ~0.22 — 0.35 TgN/ yr presented here across
a variety of different source optimization methods. Our annual budget number for the US and

Canada corresponds to 13 — 15% of the total global source, or 36 — 39% of the global anthropogenic
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source (12 -13% and 32 — 34% using BRAMS, respectively) as reported by the IPCC (Denman
et al., 2007).

1.5 Conclusions

This study captures nitrous oxide sources over the agricultural belt of the United States at more
highly resolved spatial and temporal scales than previous estimates. A diverse set of statistical
tools, from a simple regression to Bayesian and geostatistical inversions, provide a closer look at
three different aspects of emissions: seasonality, location, and intensity. The largest sources ap-
pear over the US Cornbelt (i.e. — Iowa, Illinois, Indiana, southern Minnesota, etc.) with smaller
sources likely extending into the Dakotas. This result is consistent with the spatial patterns in
the EDGAR and GEIA inventories. N,O emissions peak in June and taper off quickly both be-
fore and after, a seasonality largely missing from existing inventories. The choice of meteorology
for the transport model had a significant influence (12 + 6 %) on the estimated total emissions,
with relatively small effect on our derived spatial distribution and little impact on the derived
seasonal variation. We estimate a budget over the central US of 1.0 - 1.2 TgN/yr using WRF me-
teorology (0.9 — 1.1 using BRAMS), a source that is notably larger than the EDGAR and GEIA
inventories. Of particular note, the newest release of EDGAR (v. 4), decreases the source strength
over previous EDGAR estimates, a revision that is inconsistent with the atmospheric data.

The sources inferred from the tall tower measurements show striking similarity to the an-
ticipated spatial and temporal distributions of fertilizer application and corn production, sup-
porting the view that fertilizer plays a dominant role in generating N,O emissions over the cen-
tral US (see Fig. 1.9). Both fertilizer use and N,O emissions correspond strongly with the dis-
tribution of corn production (not shown), likely due to the magnitude of corn production and

high fertilizer use relative to other crops (USDA National Agricultural Statistics Service, 2012;
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Figure 1.9: An estimate of annual fertilizer use taken from Potter et al. (2010). The a posteriori N,O fluxes
from both the geostatistical and Bayesian inversions are strongly similar to the spatial distribution of ni-
trogen fertilizer. Potter et al. (2010) estimate manure application for 2007 and synthetic fertilizer for 2000.
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Food and Agriculture Organization of the United Nations, Plant Production Protection Division,
2012). Given this correspondence between corn and N,O, the potential for significant agricul-
tural greenhouse gas emissions are important to consider when weighing the costs and benefits

of corn subsidies and ethanol production.
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2

Anthropogenic emissions of methane in the United States

This chapter originally appeared as a research article in the Proceedings of the National Academy of Sci-

ences. For the original article, refer to Miller et al. (2013).

This study quantitatively estimates the spatial distribution of anthropogenic methane sources

in the United States by combining comprehensive atmospheric methane observations, extensive
spatial datasets, and a high-resolution atmospheric transport model. Results show that current
inventories from US EPA and EDGAR underestimate methane emissions nationally by a factor
of ~1.5 and ~1.7, respectively. Our study indicates that emissions due to ruminants and manure
are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane
source estimates is particularly pronounced in the south-central US, where we find total emis-
sions are ~2.7 times greater than in most inventories and account for 24% =+ 3% of national emis-
sions. The spatial patterns of our emission fluxes and observed methane-propane correlations
indicate that fossil fuel extraction and refining are major contributors (45 + 13%) in the south-

central US. This suggests that regional methane emissions due to fossil fuel extraction and pro-

37



cessing could be 4.9 £ 2.6 times larger than in EDGAR, the most comprehensive global methane
inventory. These results cast doubt on US EPA’s recent decision to downscale its estimate of na-
tional natural gas emissions by 25-30%. Overall, we conclude that methane emissions associated
with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts

than indicated by existing inventories.

2.1 Introduction

Methane (CHy) is the second most important anthropogenic greenhouse gas, with approximately
one third the total radiative forcing of carbon dioxide (Butler, 2014). CHy also enhances the for-
mation of surface ozone in populated areas, and thus higher global concentrations of CH, may
significantly increase ground-level ozone in the Northern Hemisphere (Fiore et al., 2002). Fur-
thermore, methane affects the ability of the atmosphere to oxidize other pollutants and plays a
role in water formation within the stratosphere (Jacob, 1999).

Atmospheric concentrations of CHy (~1800 ppb) are currently much higher than pre-industrial
levels (~680-715 ppb) (Butler, 2014; Mitchell et al., 2011). The global atmospheric burden started
to rise rapidly in the 18 century and paused in the 1990s. Methane levels began to increase
again more recently, potentially from a combination of increased anthropogenic and/or tropical
wetland emissions (Dlugokencky et al., 2009; Sussmann et al., 2012; Kirschke et al., 2013). Debate
continues, however, over the causes behind these recent trends (Wang et al., 2004; Kirschke et al.,
2013).

Anthropogenic emissions account for 50 — 65% of the global CH,4 budget of ~395-427 TgC
yr~1 (526-569 Tg CHy) (Ciais et al., 2013; Kirschke et al., 2013). The US EPA estimates the princi-
pal anthropogenic sources in the United States to be (in order of importance) 1. livestock (enteric

fermentation and manure management), 2. natural gas production and distribution, 3. landfills,
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Figure 2.1: US anthropogenic methane budgets from this study, previous top-down estimates, and from
existing emissions inventories. The south-central US includes Texas, Oklahoma, and Louisiana. US EPA
only estimates national, not regional, emissions budgets. Furthermore, national budget estimates from
EDGAR, EPA, and Kort et al. include Alaska and Hawaii while this study does not.

and 4. coal mining (US EPA, 2013). EPA assesses human-associated emissions in the US in 2008
at 22.1 TgC, roughly 5% of global emissions (US EPA, 2013).

The amount of anthropogenic CH, emissions in the US, and attributions by sector and re-
gion, are controversial (see Fig. 2.1). Bottom-up inventories from US EPA and EDGAR give
totals ranging from 19.6 to 30 TgC yr~! (Olivier & Peters, 2005; US EPA, 2013). The most re-
cent EPA and EDGAR inventories report lower US anthropogenic emissions compared to pre-

vious versions (decreased by 10% and 35%, respectively) (US EPA, 2013; European Commission,
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Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2010); this
change primarily reflects lower, revised emissions estimates from natural gas and coal produc-

tion. However, recent analysis of CH4 data from aircraft estimates a higher budget of 32.4 +

4.5 TgC yr~! for 2004 (Kort et al., 2008). Furthermore, atmospheric observations indicate higher
emissions in natural gas production areas (Katzenstein et al., 2003; Petron et al., 2012; Karion

et al.,, 2013); a steady 20-year increase in the number of US wells and newly-adopted horizontal
drilling techniques may have further increased emissions in these regions (Howarth et al., 2011;
US Energy Information Administration, 2013).

These disparities among bottom-up and top-down studies suggest much greater uncertainty
in emissions than typically reported. For example, EPA cites an uncertainty of only +13% for
the for US (US EPA, 2013). Independent assessments of bottom-up inventories give error ranges
of 50-100% (National Research Council, 2010; Dlugokencky et al., 2011), and values from Kort
et al. are 47% =+ 20% higher than EPA (Kort et al., 2008). Assessments of CHy sources to inform
policy (e.g., regulating emissions or managing energy resources) require more accurate, verified
estimates for the US.

This study estimates anthropogenic CH4 emissions over the United States for 2007 and 2008
using comprehensive CHy observations from the expanded NOAA /DOE cooperative air sam-
pling network, at the surface, on telecommunications towers, and from aircraft, combined with
an atmospheric transport model and a geostatistical inverse modeling (GIM) framework. We
utilize auxiliary spatial data (e.g., on population density and economic activity) and leverage
concurrent measurements of alkanes to help attribute emissions to specific economic sectors. The
work provides spatially-resolved CH4 emissions estimates and associated uncertainties, as well

as information by source sector, both previously unavailable.
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2.2 Model and observation framework

We employ the Stochastic Time-Inverted Lagrangian Transport model (STILT) to calculate the
transport of CHy from emission points at the ground to measurement locations in the atmo-
sphere (Lin et al., 2003). STILT follows an ensemble of particles backward in time, starting from
each observation site, using wind fields and turbulence modeled by the Weather Research and
Forecasting (WRF) model (Nehrkorn et al., 2010). STILT derives an influence function (“foot-
print”, units: ppb CHy4 per unit emission flux) linking upwind emissions to each measurement.
Inputs of CHy from surface sources along the ensemble of back-trajectories are averaged to com-
pute the CH, concentration for comparison with each observation.

We use observations for 2007 and 2008 from diverse locations and measurement platforms.
The principal observations derive from daily flask samples on tall towers in the NOAA mea-
surement network (4984 total observations) and vertical profiles from aircraft (7710 observations,
obtained during regular NOAA flights (NOAA ESRL, 2013), regular DOE flights (Biraud et al.,
2013), and from the STARTOS aircraft campaign (Pan et al., 2010)); locations are displayed in Fig.
2.2. We use a GIM framework (Kitanidis & Vomvoris, 1983; Michalak et al., 2004) to analyze the
footprints for each of the 12694 observations, and these footprints vary by site and with wind
conditions. In aggregate, the footprints provide spatially resolved coverage of most of the conti-
nental US, except the south-east coastal region (see suppl. Fig. 8).

The GIM framework, using footprints and concentration measurements, optimizes CH, sources
separately for each month of 2007 and 2008 on a 1° x 1° latitude-longitude grid for the United
States. The contributions of fluxes from natural wetlands are modeled first and subtracted from
the observed CHy (2.0 TgC yr~! for the continental US); these fluxes are much smaller than an-
thropogenic sources in the US and thus would be difficult to independently constrain from atmo-

spheric data (see supplement).
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Figure 2.2: CH, concentration measurements from 2007 and 2008 and the number of observations associ-
ated with each measurement type. Blue text lists the number of observations associated with each station-

ary tower measurement site.
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The GIM framework represents the flux distribution for each month using a deterministic spa-
tial model plus a stochastic spatially-correlated residual, both estimated from the atmospheric
observations. The deterministic component is given by a weighted linear combination of spa-
tial activity data from the EDGAR 4.2 inventory; these datasets include any economic or demo-
graphic data that may predict the distribution of CH4 emissions (e.g., gas production, human
and ruminant population densities, etc.). Both the selection of the activity datasets to be retained
in the model, and the associated weights (emission factors), are optimized to best match ob-
served CH,4 concentrations. Initially, seven activity datasets are included (Table 1) from EDGAR
4.2. We select the minimum number of datasets with the greatest predictive ability using the
Bayesian Information Criterion (BIC, see supplement) (Gourdji et al., 2012). BIC numerically
scores all combinations of available datasets based on how well they improve goodness of fit and
applies a penalty that increases with the number of datasets retained.

The stochastic component represents sources that do not fit the spatial patterns of the activ-
ity data. GIM uses a covariance function to describe the spatial and temporal correlation of the
stochastic component and optimizes its spatial and temporal distribution simultaneously with
the optimization of the activity datasets in the deterministic component (see supplement) (Ki-
tanidis & Vomvoris, 1983; Michalak et al., 2004; Gourdji et al., 2012). Because of the stochastic
component, the final emissions estimate can have a different spatial and temporal distribution
from any combination of the activity data.

If the observation network is sensitive to a broad array of different source sectors and /or if
the spatial activity maps are effective at explaining those sources, many activity datasets will be
included in the deterministic model. If the deterministic model explains the observations well,
the magnitude of CH,4 emissions in the stochastic component will be small, the assignment to
specific sectors will be unambiguous, and uncertainties in the emissions estimates will be small.

This is not the case here, as discussed below.
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A number of previous studies employed top-down methods to constrain anthropogenic CH,4
sources from global (Chen & Prinn, 2006; Meirink et al., 2008; Bergamaschi et al., 2009; Bousquet
et al., 2011; Monteil et al., 2011) to regional (Katzenstein et al., 2003; Kort et al., 2008; Zhao et al.,
2009; Kort et al., 2010; Jeong et al., 2012; Peischl et al., 2012; Petron et al., 2012; Wennberg et al.,
2012) scales over North America. The regional studies adopted one of three approaches: use a
simple box model to estimate an overall CH, budget (Katzenstein et al., 2003), estimate a budget
using the relative ratios of different gases (Miller et al., 2012a; Peischl et al., 2012; Petron et al.,
2012; Wennberg et al., 2012), or estimate scaling factors for inventories by region or source type
(Kort et al., 2008; Zhao et al., 2009; Kort et al., 2010; Jeong et al., 2012). The first two methods do
not usually give explicit information about geographic distribution. The last approach provides
information about the geographic distribution of sources, but results hinge on the spatial accu-
racy of the underlying regional or sectoral emissions inventories (Law et al., 2002).

Here we are able to provide more insight into the spatial distribution of emissions; like the
scaling factor method above, we leverage spatial information about source sectors from an ex-
isting inventory, but in addition we estimate the distribution of emissions where the inventory
is deficient. We further bolster attribution of regional emissions from the energy industry using
the observed correlation of CH4 and propane, a gas not produced by biogenic processes like live-

stock and landfills.

2.3 Results

2.3.1 Spatial distribution of CH4 emissions

Figure 2.3 displays the result of the two-year mean of the monthly CH, inversions and differ-
ences from the EDGAR 4.2 inventory. We find emissions for the United States that are a factor

of 1.7 larger than the EDGAR inventory. The optimized emissions estimated by this study bring
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Figure 2.3: The two year averaged CH, emissions estimated in this study (a) compared against the com-
monly used EDGAR 4.2 inventory (b, c). Emissions estimated in this study are greater than in EDGAR 4.2,
especially near Texas and California.

the model closer in line with the observations (see Figs. 2.4 and 56). Posterior emissions fit the
CH, observations (R? = 0.64, RMSE = 31 ppb) much better than EDGAR v4.2 (R? = 0.23, RMSE
=49 ppb). Evidently, the spatial distribution of EDGAR sources is inconsistent with emissions
patterns implied by the CH; measurements and associated footprints.

Several diagnostic measures preclude the possibility of major systematic errors in WRF-STILT.
First, excellent agreement between the model and measured vertical profiles from aircraft im-
plies little bias in modeled vertical air mixing (e.g., boundary layer heights, Fig. 2.4). Second, the
monthly posterior emissions estimated by the inversion lack statistically significant seasonality
(see supplement Fig. 5). This implies that seasonally-varying weather patterns do not produce
detectable biases in WRF-STILT. The supplement discusses possible model errors and biases in
greater detail.

CHy,4 observations are sparse over parts of the southern and central East Coast, and in the Pa-
cific Northwest. Emissions estimates for these regions therefore rely more strongly on the de-
terministic component of the flux model, with weights constrained primarily by observations

elsewhere. Hence, emissions in these areas, including from coal mining, are poorly constrained
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Figure 2.4: A model-measurement comparison at several regular NOAA aircraft monitoring sites (aver-
aged over 2007-2008). Plots include the measurements; the modeled boundary condition; the summed

boundary condition and wetland contribution (from the Kaplan model); and the summed boundary, wet-
land, and anthropogenic contributions (from EDGAR v4.2 and the posterior emissions estimate).

(see supplement).

2.3.2 Contribution of different source sectors

Only two spatial activity datasets in Table 1 are selected through the BIC as meaningful predic-
tors of CHy4 observations over the US: population densities of humans and ruminants. Some sec-
tors are eliminated by the BIC because emissions are situated far from observation sites (e.g.,
coal mining in West Virginia or Pennsylvania), making available CH4 data insensitive to these
predictors. Other sectors may strongly affect observed concentrations but are not selected, indi-
cating that the spatial datasets from EDGAR are poor predictors for the distribution of observed
concentrations (e.g., oil and natural gas extraction and oil refining). Sources from these sectors
appear in the stochastic component of the GIM (see supplement).

The results imply that existing inventories underestimate emissions from two key sectors: ru-

minants and fossil fuel extraction and /or processing, discussed in detail below.
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We use the optimized ruminant activity dataset to estimate the magnitude of emissions with
spatial patterns similar to animal husbandry and manure. Our corresponding US budget of 12.7
+ 5.0 TgC yr~! is nearly twice that of EDGAR and EPA (6.7 and 7.0, respectively). The total pos-
terior emissions estimate over the northern plains, a region with high ruminant density but lit-
tle fossil fuel extraction, further supports the ruminant estimate (Nebraska, Iowa, Wisconsin,
Minnesota, and South Dakota). Our total budget for this region of 3.4 £ 0.7 compares to 1.5 TgC
yr~! in EDGAR. Ruminants and agriculture may also be partially responsible for high emissions
over California (Jeong et al., 2013). EDGAR activity datasets are poor over California (Xiang
et al.,, 2013a), but several recent studies (Zhao et al., 2009; Jeong et al., 2012; Peischl et al., 2012;
Wennberg et al., 2012; Jeong et al., 2013) have provided detailed top-down emissions estimates
for the state using datasets from state agencies.

Existing inventories also greatly underestimate CHy4 sources from the south-central US (see
Fig. 2.3). We find the total CH, source from Texas, Oklahoma, and Kansas to be 8.1 £+ 0.96 TgC
yr~1, a factor of 2.7 higher than the EDGAR inventory. These three states alone constitute ~24%
+ 3% of the total United States anthropogenic CH4 budget or 3.7% of net US greenhouse gas
emissions (in CO, equivalents (US EPA, 2013)).

Texas and Oklahoma were among the top five natural gas producing states in the country in
2007 (US Energy Information Administration, 2013), and aircraft observations of alkanes indicate
that the natural gas and/or oil industries play a significant role in regional CH4 emissions. Con-
centrations of propane (C3Hjg), a tracer of fossil hydrocarbons (Koppmann, 2008), are strongly
correlated with CHy at NOAA /DOE aircraft monitoring locations over Texas and Oklahoma
(R* = 0.72, see Fig. 2.5). Correlations are much weaker at other locations in North America
(R? = 0.11 to 0.64).

We can obtain an approximate CH4 budget for fossil fuel extraction in the region by subtract-

ing the optimized contributions associated with ruminants and population from the total emis-
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Figure 2.5: Correlations between propane and CHy at NOAA /DOE aircraft observation sites in Oklahoma
(a) and Texas (b) over 2007 — 2012. Correlations are higher in these locations than any other North Amer-
ican sites, indicating large contributions of fossil fuel extraction and processing to CH4 emitted in this
region.
sions. The residual (see Fig. S2c) represents sources that have spatial patterns not correlated with
either human or ruminant density in EDGAR. Our budget sums to 3.7 + 2.0 TgC yr~!, a fac-
tor of 4.9 + 2.6 larger than oil and gas emissions in EDGAR v4.2 (0.75 TgC yr~!) and a factor of
6.7 & 3.6 greater than EDGAR sources from solid waste facilities (0.55 TgC yr~1), the two major
sources that may not be accounted for in the deterministic component. The population compo-
nent likely captures a portion of the solid waste sources, so this residual methane budget more
likely represents natural gas and oil emissions than landfills. The supplement discusses in detail
the uncertainties in this sector-based emissions estimate. We currently do not have the detailed,
accurate, and spatially resolved activity data (fossil fuel extraction and processing, ruminants,
solid waste) that would provide more accurate sectorial attribution.

Katzenstein et al. (2003) were the first to report large regional emissions of CHy from Texas,
Oklahoma, and Kansas; they cover an earlier time period (1999-2002) than this study. They
used a box model and 261 near-ground CH4 measurements taken over 6 days to estimate a to-

tal Texas-Oklahoma-Kansas CH, budget (from all sectors) of 3.8 & 0.75 TgC yr—!. We revise their
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estimate upward by a factor of two based on the inverse model and many more measurements
from different platforms over two full years of data. The supplement further compares the CH,4

estimate in Katzenstein et al. and in this study.

2.4 Discussion and summary

This study combines comprehensive atmospheric data, diverse datasets from the EDGAR inven-
tory, and an inverse modeling framework to derive spatially-resolved CH,4 emissions and in-
formation on key source sectors. We estimate a mean annual US anthropogenic CH4 budget for
2007 and 2008 of 33.4 & 1.4 TgC yr~! or ~7-8% of the total global CH, source. This estimate is a
factor of 1.5 and 1.7 larger than EPA and EDGAR v4.2, respectively. CH4 emissions from Texas,
Oklahoma, and Kansas alone account for 24% of US methane emissions, or 3.7% of the total US
greenhouse gas budget.

The results indicate that drilling, processing, and refining activities over the south-central
United States have emissions as much as 4.9 + 2.6 times larger than EDGAR, and livestock oper-
ations across the US have emissions approximately twice that of recent inventories. The US EPA
recently decreased its CH, emission factors for fossil fuel extraction and processing by 25-30%
(for 1990-2011) (US EPA, 2013), but we find that CH,4 data from across North America instead

indicate the need for a larger adjustment of the opposite sign.
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3

Comment: Linking methane emissions inventories with atmo-

spheric observations

The following comment was published in the Proceedings of the National Academy of Sciences (Miller

et al., 2014b). 1t is a reply to a letter that Hristov et al. (2014) wrote in response to Miller et al. (2013).

Hristov et al. (2014) argue that our study “provides a comprehensive, quantitative analysis of
anthropogenic methane sources,” but that the conclusion “that US EPA [US Environmental Pro-
tection Agency] estimates for livestock methane emissions are grossly underestimated appears to
be unsubstantiated by ... [a] ‘bottom-up” approach” outlined in their letter.

In this reply, we discuss the information provided by atmospheric methane data about methane
emissions, and comment on the challenge of connecting “bottom-up” and “top-down” estimates,
a conclusion shared by Hristov et al. (2014).

Our study (Miller et al., 2013) used both near-surface and airborne atmospheric measurements
of CH4 concentrations to characterize the total mass of methane added to the atmosphere by

surface emissions, discretized in space and time. We conclude that total United States methane
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emissions in 2007-2008 were 33.4 & 1.4 TgC/yr (44.5 TgCHy/yr), 45-57% above the most recent
US EPA baseline estimate for those years (US EPA, 2013). Furthermore, we estimate “the magni-
tude of emissions with spatial patterns similar to animal husbandry and manure” (Miller et al.,
2013) at 12.7 £ 5.0 TgC/yr (16.9 TgCH,4 / yr), 11-156% above baseline EPA estimates for those
sectors (best estimate 84% above EPA). Our conclusions are generally consistent with previous
more limited top-down studies examining total United States (e.g., Kort et al., 2008) and regional
livestock / manure methane emissions (e.g., Jeong et al., 2013).

Hristov et al. (2014) argue that “the validity of this ‘top-down’ approach can be verified by a
relatively simple ‘bottom-up’ method using current livestock inventories and enteric or manure
methane emission factors.” The authors build this estimate for enteric fermentation by multiply-
ing the US Department of Agricuture (USDA) livestock inventory estimates for 2013 (note that
our study covers 2007-2008), by “assumed” feed dry matter intake and “assumed” methane pro-
duction rates. “With the above assumptions,” Hristov et al. (2014) estimate methane emissions
from enteric fermentation comparable to the US EPA’s inventory for 2011. Similarly, the authors
use USDA livestock inventories and Intergovernmetal Panel on Climate Change (IPCC) (Inter-
governmental Panel On Climate Change, 2006) manure methane emissions factors to estimate
United States manure emissions that are 35% lower than EPA inventory numbers.

The estimates of Hristov et al. (2014) therefore require a series of assumptions, for which er-
rors compound as several factors are multiplied and added. Feed matter intake and emission
factors both have substantial uncertainties (Intergovernmental Panel On Climate Change, 2006),
as do the IPCC manure methane emission factors (Intergovernmental Panel On Climate Change,
2006),. Given these uncertainties, which are inherent in all bottom-up inventories, we strongly
disagree that “the validity of [our] ‘top-down’ approach can be verified” using the Hristov et al.
(2014) estimates.

The method we applied is especially suited to quantifying large-scale total emissions, and un-
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certainties increase for sector- and region-specific estimates [as outlined above and in our study
(Miller et al., 2013)]. Even in light of these uncertainties, the total emissions with spatial patterns
consistent with animal husbandry are still likely to be substantially above EPA estimates. Con-
versely, bottom-up inventories are strongest at detailing individual emission types, but uncer-
tainties compound at larger scales, such as the national scale examined here. This difference is
precisely why we argue that careful, detailed assessments are needed to reconcile the emissions
clearly visible from atmospheric observations with bottom-up emissions inventories. Hristov

et al. (2014) also note a “need for a detailed inventory ... to more accurately estimate ... emis-

sions.” On this point we strongly agree.
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4

Observational constraints on the distribution, seasonality, and
environmental predictors of North American boreal methane

emission

This chapter originally appeared as a research article in Global Biogeochemical Cycles. For the original

article, refer to Miller et al. (2014c).

Wetlands comprise the single largest global source of atmospheric methane, but current flux es-
timates disagree in both magnitude and distribution at the continental scale. This study uses
atmospheric methane observations over North America from 2007-2008 and a geostatistical in-
version to improve understanding of Canadian methane fluxes and associated biogeochemical
models. The results bridge an existing gap between traditional top-down, inversion studies,
which typically emphasize total emission budgets, and biogeochemical models, which usually
emphasize environmental processes. The conclusions of this study are threefold. First, the most

complete process-based methane models do not always describe available atmospheric methane
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observations better than simple models. In this study, a relatively simple model of wetland dis-
tribution, soil moisture, and soil temperature outperformed more complex model formulations.
Second, we find that wetland methane fluxes have a broader spatial distribution across western
Canada and into the northern US than represented in existing flux models. Finally, we calculate
total methane budgets for Canada and for the Hudson Bay Lowlands, a large wetland region
(50-60°N, 75-96°W). Over these lowlands, we find total methane fluxes of 1.8 & 0.24 TgC yr—1,
a number in the mid-range of previous estimates. Our total Canadian methane budget of 16.0
+ 1.2 TgC yr~! is larger than existing inventories, primarily due to high anthropogenic emis-
sions in Alberta. However, methane observations are sparse in western Canada, and additional
measurements over Alberta will constrain anthropogenic sources in that province with greater

confidence.

4.1 Introduction

Atmospheric methane (CHy) is the second-most important long-lived greenhouse gas, and since
the pre-industrial era, its radiative forcing has increased to 0.507 W m~2, approximately one
third that of CO, (Butler, 2014). Therefore, greenhouse gas reduction strategies and future cli-
mate predictions will require accurate estimates of methane emissions. Total global emissions
are constrained to approximately +15% using observations of the global CH4 burden and rate of
increase, combined with an estimate of the CH, atmospheric lifetime (e.g. Kirschke et al., 2013).
However, uncertainties in emissions from individual source types can be greater than a factor of
two (O’Connor et al., 2010; Dlugokencky et al., 2011; Melton et al., 2013a). For example, wetlands
likely constitute the largest single source of atmospheric methane, but estimates of global fluxes
vary from 60 to 213 TgC yr~! (80 to 284 TgCH,4 yr~!), meaning they comprise anywhere from 14

to 50% of the total budget (e.g., O’Connor et al., 2010; Melton et al., 2013a; Bridgham et al., 2013;
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Kirschke et al., 2013; Ciais et al., 2013, and references therein). Anthropogenic sources (e.g., fossil
fuel extraction and processing, ruminants, landfills), by comparision, likely account for 50 — 65%
of total global emissions (Ciais et al., 2013; Kirschke et al., 2013). Uncertainties in methane fluxes
are larger at the regional scale; estimates of methane from the Hudson Bay Lowlands (HBL), a
large boreal wetland region in Canada, range from 0.28 — 8.5 TgC yr~! (Roulet et al., 1992; Wor-
thy et al., 2000; Pickett-Heaps et al., 2011; Melton et al., 2013a).

The present study focuses on improving methane flux estimates from boreal wetlands. These
regions are a particular concern because of their large soil carbon stocks. Methane fluxes in wet-
lands occur primarily in waterlogged, anaerobic soil conditions due to the decomposition of
organic material by methanogenic Archaea. Boreal and arctic regions are far less productive
than many other ecosystems but nonetheless play a vital role in the global carbon cycle. These
northerly regions may contain half of all wetlands and soil carbon in the world (~1700 PgC),
twice the amount of carbon currently held within the atmosphere (Tarnocai et al., 2009).

Evidence suggests that high-latitude wetlands are already changing due to an evolving cli-
mate and that ecosystem changes may accelerate (Tarnocai, 2009; Avis et al., 2011; Schuur et al.,
2013). For example, most studies predict that climate change will increase methane fluxes from
boreal and arctic regions; estimates range from 6% to 35% increase in methane fluxes per °C
of global temperature increase (e.g., Gedney et al., 2004; Khvorostyanov et al., 2008; O’Connor
et al,, 2010; Koven et al., 2011; Zhu et al., 2011).

Three factors may explain the large differences among model estimates of boreal methane
fluxes. First, models differ in their underlying environmental variables. For example, existing
models of global wetland area range from 2.6 to 9 x10° km? (Petrescu et al., 2010) and have dif-
fering spatial distributions (especially over boreal North America, Melton et al., 2013a). Second,
models further differ in functional form (see section 4.2.4), due in part to uncertainties and / or

complexity in biophysical methane processes. For example, many models relate maps of soil
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temperature to wetland methane fluxes using a coefficient known as Q10. This coefficient de-
scribes the factor by which a reaction rate increases per 10°C rise in temperature. Estimates of
this coefficient range from 1 to 35, largely due to microbial and soil heterogeneity (van Hulzen

et al., 1999; Whalen, 2005; O’Connor et al., 2010; Lupascu et al., 2012). Finally, differences among
existing flux models also stem from difficulties extrapolating from plot-level to regional scale.
Most flux models calibrate to individual wetland sites and extrapolate to regional or global scales
(O’Connor et al., 2010; Zhang et al., 2012). However, small scale study sites exhibit substantial
heterogeneity, and fluxes can vary by an order of magnitude over micro-topography on the cen-
timeter scale (Waddington & Roulet, 1996, Comas et al., 2005; Hendriks et al., 2010).

Top-down approaches like inverse modelling provide one means of reducing the wide un-
certainty in wetland methane fluxes. Top-down studies use atmospheric methane measure-
ments and meteorological models to improve existing flux estimates at regional (Zhao et al.,
2009; Bergamaschi et al., 2010; Villani et al., 2010; Kim et al., 2011) and global (Chen & Prinn,
2006; Bergamaschi et al., 2013; Fraser et al., 2013) scales. Most existing methods emphasize total
emissions budgets and provide relatively little information on wetland processes, but two recent
publications begin to bridge this gap. Spahni et al. (2011) conduct a global scale inversion that
estimates fluxes by wetland type. Pickett-Heaps et al. (2011) use atmospheric methane measure-
ments from northern Ontario to assess the magnitude and seasonal structure of a wetland flux
model over the HBL. Results imply a premature seasonal onset of fluxes in this model, referred
to as the “Kaplan model.” The authors suggest removing fluxes from snow-covered regions as
one possible solution. In spite of these recent studies, existing top-down approaches provide
limited assessment of the underlying environmental variables or the functional form of existing
wetland flux models.

The present study moves closer to integrating top-down flux estimates with process-based,

bottom-up modeling methods. First, we explore how atmospheric methane measurements can
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be used to construct and assess biogeochemical process models at continental scale. Second, we
use a broad network of measurement sites in Canada and the US to understand the spatial and
seasonal distribution of North American boreal wetland fluxes. To achieve these goals, we com-
bine in situ methane measurements across Canada and the United States from 2007 and 2008, a

regional atmospheric transport model, and a geostatistical inverse modeling framework.

4.2 Model and measurements

The methods sections and subsequent discussion are organized as follows. First, we describe
the atmospheric model and measurements (sections 4.2.1, 4.2.2, and 4.2.3). Using this model, we
compare two existing wetland flux estimates, Kaplan and DLEM, against atmospheric methane
observations. Both flux estimates are described in detail below (sections 4.2.4). We subsequently
use a geostatistical inverse modeling framework to estimate North American boreal methane
fluxes (section 4.3.1). This flux estimate has two components. The first component, termed the
deterministic model, is a combination of environmental predictors (e.g., soil moisture, temper-
ature, etc.) that best represents the methane fluxes, as seen through the atmospheric methane
observations (section 4.3.2). The second component, termed the stochastic component, estimates
the spatial and /or temporal flux patterns that may be lacking in the environmental predictors,
and therefore cannot be modeled using the deterministic model. The geostatistical inverse model
produces a final best estimate, termed the posterior fluxes, and it is the sum of the deterministic

and stochastic components.

42.1 The regional atmospheric model

We simulate in situ methane mixing ratios using STILT, the Stochastic, Time-Inverted, Lagrangian

Transport model (Lin et al., 2003). STILT is a particle model; an ensemble of air-following parti-
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cles is released from each methane observation site. In this study, a new 500-particle ensemble is
initiated for each of the hourly methane measurements. These particles travel backward in time
along the wind fields of a meteorology model, in this case for 10 days. STILT further includes
stochastic motions that simulate boundary layer turbulence.

Wind fields from the Weather Research and Forecasting model (WRF version 2.1.2) are used to
drive STILT trajectories in this study. Nehrkorn et al. (2010), Hegarty et al. (2013), and the sup-
plement describe this meteorology in greater detail. The WREF fields used here have a nested res-
olution; 10-km within 24-48 hours of the observation sites and 40-km in more distant regions (see
supplement).

STILT subsequently uses the trajectories to calculate a footprint map. The footprints relate the
surface fluxes in North America to the concentration increment seen at the measurement location
and have units of mixing ratio per unit surface flux. This footprint is based on the number of
particles in a region and their altitudes relative to the planetary boundary layer.

The STILT setup here incorporates fluxes from existing inventories on a %O by %O longitude—

latitude grid (11 to 65°N and 145 to 51°W).

422 Model boundary condition

STILT only models emissions over the North American continent. The model therefore requires
a boundary condition to represent the concentration of methane in incoming air over the Pacific
and Arctic oceans before reaching North American sources. This study uses an empirical bound-
ary curtain that interpolates a variety of trace gas measurements from ground-based sites and
aircraft in the NOAA ESRL Global Monitoring Division’s Cooperative Global Air Sampling Net-
work. The resulting boundary curtain varies latitudinally and vertically and has a daily tempo-
ral resolution (see the supplement). The estimated boundary condition value associated with

each STILT particle run depends on the ending latitude, altitude, and day of each particle. This
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boundary value is then added to the modeled methane signal from North American sources.
The sum can be directly compared against measured methane mixing ratios at tower sites across

Canada and the northern US (e.g., section 4.3.1).

4.2.3 Measurements

This study uses observed methane mixing ratios for 2007 to 2008 from five observation sites
sensitive to boreal wetland fluxes: hourly measurements from 4 Canadian observation towers
and daily flask measurements from one US tall tower. Sites (from east to west) include Chi-
bougamau, Quebec (CHM, 50°N, 74°W, 30 m above ground level); Fraserdale, Ontario (FSD,
50°N, 83°W, 40 m agl); Park Falls, Wisconsin (LEFE, 46°N, 90°W, 244 m agl); East Trout Lake,
Saskatchewan (ETL, 54°N, 104°W, 105 m agl); and Candle Lake, Saskatchewan (CDL, 54°N,
105°W, 30 m agl, 2007 only) (Fig. 4.1).

Small scale heterogeneities caused by turbulent eddies and incomplete mixing make it diffi-
cult to model hourly-scale variability in the in situ data. STILT also has difficulty estimating the
very shallow nighttime boundary layer and therefore rarely captures variations in nighttime con-
centrations. Hence, this study uses afternoon averages of the methane data and model output

(1pm - 7pm local time), a total of 2,485 observations after averaging.
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Figure 4.1: Summer mean wetland fluxes from the Kaplan and DLEM wetland methane models (for July,
August, and September, averaged over 2007-2008). Both models estimate similar annual totals for the
HBL, but DLEM has a more pronounced summer peak.
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424 Existing flux models

The Kaplan model

The first inventory used in this study is the Kaplan model, described in Kaplan (2002) and Pickett-
Heaps et al. (2011) (Fig. 4.1). The model has the following functional form:
2 o
E =0bWAT) Y  — (4.1)
i=1

Ti

AT) =1.0 x 103FeT2

where E is the wetland flux expressed here in units of pmol m~—2 s~!. C; and C, represent the
moles of carbon per unit area in soil and litter, normalized by their respective lifetimes (7; and
72). This soil carbon estimate is taken from the Lund-Potsdam-Jena (LPJ) dynamic global vege-
tation model (Sitch et al., 2003). W is the maximum possible extent of wetlands in a given grid
box (a fraction, from LPJ), and 0 is a measure of whether wetlands are actually present (0 = 0 if
soil moisture (M) < 10% and 6 = 1 otherwise). An emissions factor b represents the fraction of
methane per mol carbon respired (b = 3 x 1072). f(T) represents an Arrhenius equation of tem-
perature (in Kelvin). In this equation, F adjusts the inventory based on soil temperature to bet-
ter match differences between boreal (B) and tropical (T) wetlands (refer to Pickett-Heaps et al.,
2011). We build this inventory with soil moisture (for 6) and soil temperature (T) from WREF (the
same meteorology used to drive STILT) at a soil depth of 25cm. This soil depth provided the best
match between the Kaplan model and atmospheric methane observations. This setup differs
from Pickett-Heaps et al. (2011), who used surface skin temperature instead of soil temperature
below the ground surface.

The LPJ] model outputs used here for wetland coverage and soil carbon are updated from pre-
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vious studies that also used the LP]/Kaplan model (e.g., Bergamaschi et al., 2007; Pickett-Heaps
etal.,, 2011). Among other updates, soil carbon is approximately a factor of four lower than in the
previous studies listed above. This adjustment matches the LP] model against upland soil pro-
files, but the change appears inconsistent with methane observations over boreal wetlands (e.g.,
Pickett-Heaps et al., 2011). We re-adjust the LPJ soil carbon estimate upward by a factor of 4.15
to match the LPJ/Kaplan model in Pickett-Heaps et al. (2011). This previous study compares the
Kaplan model against measurements from Fraserdale (FSD), Ontario, and likely better represents

high latitude soil carbon than the new LPJ estimate.

The DLEM model

DLEM, the Dynamic Land Ecosystem Model, includes more complexity than the Kaplan model
described above (Tian et al., 2010, 2012) (Fig. 4.1). It models the production of methane in soil
pore water (P, expressed here in pmol m~2 s~1), and only a fraction of methane produced is re-
leased to the atmosphere (E). This fraction depends on a multitude of factors that are discussed
in depth by Tian et al. (2010): plant-mediated transport, diffusive flux, ebullition, oxidation by
methanotrophy, and oxidation during plant-mediated transport.

Methane production in soil pore water (P) is simpler to describe:

[DOC]

P = Do X o
> 1DOC] + k

x f(T) x fi(pH) x fiM) (4.2)

where P,y is the maximum possible rate of CHy production in soils, a spatially variable param-
eter (see Tian et al., 2010). [DOC] is dissolved organic content, determined by gross primary pro-
ductivity, litter fall, and soil organic matter decomposition rates (Tian et al., 2012). k is the half-

saturation coefficient, f(T) is the effect of soil temperature, f(pH) is the effect of soil pH, and f(M)

is the effect of soil water content. The functions of temperature, pH, and soil moisture have the
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following forms (Tian et al., 2010):

0 T < 268.15
AT) = |2.5(T-303.15)/10 303 15 > T > 268.15 (4.3)
1 T > 303.15
0 pH < 4.0 or pH > 10.0
flH) = 1+1e6><e1>£)2[72.5pH] 4.0 <pH <70 (4.4)
1.02
| T Te6xexp [-2.5(14.0—pH)] 70<pH <100 |
0 M < My,
M2 _
fM) = {0.368 ( e _ﬁ@) exp [ e _ﬁf/} My <M < M, (4.5)
1 M > M,

where My is the field capacity, and M; is the saturated water content of soil. Tian et al. (2010)
provide a graphical depiction of these functional dependences.

The environmental data for DLEM are derived from a number of sources: meteorological data
from North American Regional Reanalysis (NARR, Mesinger et al., 2006) and land cover/vegetation

data from a combination of sources (see Tian et al., 2010, for more detail).

4.3 Statistical framework

43.1 Conceptual overview

We implement a geostatistical inverse model to infer information about methane fluxes and to
assess the environmental drivers in existing wetland models. The statistical approach follows
that of Kitanidis & Vomvoris (1983), Michalak et al. (2004), and Gourdji et al. (2012). The inver-

sion estimates the spatial and temporal distribution of emissions that is most likely given the
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atmospheric methane measurements and the transport information provided by the atmospheric
model.

The inversion first requires a linear expression for the model-measurement framework:

z=Hs+¢ (4.6)

where s (m x 1) are the true, unknown fluxes. Unlike the wetland-specific fluxes estimated by Ka-
plan and DLEM (E), s encompasses fluxes from all source types. z is the n x 1 vector of observed
mixing ratios minus the estimated boundary condition value (see section 4.2.2). H (n x m) are the
footprints computed by STILT (section 4.2.1). Finally, € (n x 1) describes model-data mismatch
— all errors unrelated to an imperfect emissions estimate (e.g., transport error, aggregation error,

etc.). This vector is assumed to follow a multivariate normal distribution with a mean of zero:

e = N(0,R) (4.7)

where R (n x n) is the covariance matrix of these errors.
Using the above framework, the inversion then models the unknown fluxes (s, Eq. 4.6) using
the following structure:

s = XB+N(0,Q) (4.8)

The first component of the statistical model (Xp) is a weighted least squares regression and is
termed the ‘deterministic model” or “inversion prior’ (section 4.3.2). Each column of X (dimen-
sions m x p)1is a predictor in the weighted regression (e.g., Gourdji et al., 2008, 2012). In this

study, X includes datasets termed “auxiliary data’ (e.g., soil temperature, moisture, an anthro-

pogenic emissions inventory, etc.) that help explain the spatial and seasonal distribution of methane

fluxes. Additionally, one column of this matrix is constant, equivalent to the intercept of the re-
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gression. The regression coefficients (3, dimensions p x 1) are unknown and are estimated in the
inversion using the atmospheric methane data.

The second component the geostatistical inverse model, N/(0, Q), is termed the ‘stochastic
component’ or the ‘spatially-correlated residual.” The stochastic component adjusts, at grid scale,
the fluxes estimated by the deterministic model. This component, for example, can correct the
deterministic model if any environmental data in X have the incorrect distribution. The covari-
ance matrix Q (dimensions m x m) describes the magnitude and the spatiotemporal correlation
of the stochastic component. It includes off-diagonal elements that follow an exponential covari-
ance model: any fluxes estimated by the stochastic component will be spatially correlated with a
given decorrelation length. This spatial correlation means that the stochastic component can ad-
just the flux estimate on a fine grid-scale relative to the density of atmospheric observations (e.g.,
Michalak et al., 2004; Mueller et al., 2008; Villani et al., 2010; Bergamaschi et al., 2013; Miller et al.,
2013).

The best estimate of a geostatistical inversion is obtained by minimizing a cost function (L)
with respect to the methane fluxes (s) and the coefficients (8) (e.g., Kitanidis & Vomvoris, 1983;

Michalak et al., 2004):

Lip = %(z —Hs)'"R™(z — Hs) + %(s —XB)'Q (s — Xp) (4.9)
The supplement discusses further details of the statistical setup. In particular, we implement the
inversion with Lagrange multipliers to prevent negative fluxes (see supplement, Miller et al.,
2014a). Furthermore, we estimate the covariance matrices (R and Q) using restricted maximum
likelihood estimation (REML) (Kitanidis, 1995; Michalak et al., 2004).
We use this statistical framework to estimate monthly methane fluxes (s) on a 1° by 1° longitude-

latitude grid over the years 2007 and 2008, yielding 41,328 total locations in space and time. The
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geographic domain of the inversion spans from 35 to 65°N latitude and 145 to 51°W longitude.

4.3.2 The deterministic model of fluxes

The following sections discuss the deterministic model in greater detail.

Auxiliary environmental data

We consider a number of auxiliary datasets or predictors for use in the deterministic model. Ul-
timately, only a selection of these datasets is used in the inversion depending on how well each
explains the atmospheric methane data (see section 4.3.2). These datasets include both environ-
mental drivers of wetland fluxes and inventory data on anthropogenic emissions. The full ar-
ray of possible datasets for X are shown in Table 4.1. These include meteorological data from
WREF (used in this version of Kaplan model, Nehrkorn et al., 2010) and NARR (used in DLEM,
Mesinger et al., 2006). We consider soil carbon estimates from the LPJ model (used in Kaplan,
Sitch et al., 2003; Pickett-Heaps et al., 2011) and the Northern Circumpolar Soil Carbon Database
(NCSCD) (Tarnocai et al., 2009; Hugelius et al., 2013). Wetland coverage estimates include model
output from LPJ and surface water data from the Global Inundation Extent from Multi-Satellites
(GIEMS) database (Prigent et al., 2007; Papa et al., 2010). Refer to the supplement for maps of
these auxiliary datasets.

In addition to wetland-related datasets, we also consider multiple datasets or predictors for
the distribution of anthropogenic emissions. Specifically, we consider including the EDGAR v4.2
anthropogenic inventory in the deterministic model as well as the individual sector-by-sector
emissions estimates from EDGAR. A companion study found that EDGAR v4.2 did not match
the estimated distribution of anthropogenic emissions in the United States (Miller et al., 2013).

Hence, we consider additional proxies other than EDGAR v4.2 for the spatial distribution of

66



Table 4.1: Auxiliary data or predictors tested for use in the deterministic model. Note: The second column
(static/variable) lists whether the auxiliary data in question is seasonally constant or varies temporally.
Also, soil moisture and temperature are available at multiple vertical soil levels in WRF and NARR: 5, 25,
70, and 150 cm depth in WRF and 0, 10, 40, and 100cm depth in NARR.

Description Static/variable Source model
Liquid soil moisture (e.g., not frozen) (M) variable WRE NARR
Total soil moisture (liquid + frozen) (Mr;) variable WRF, NARR
Soil temperature variable WRE, NARR
Wetland coverage fraction (W) static LPJ, GIEMS
Soil carbon content (C) static LPJ, NCSCD
Estimated distribution of anthropogenic emissions static EDGAR v4.2
Smooth tricubic functions static

anthropogenic emissions. For example, we construct smooth tri-cube functions centered over
known anthropogenic source regions (e.g., Alberta, Oklahoma, California, the US East Coast;
refer to the supplement). The subsequent section discusses how to choose among this array of

auxiliary datasets when constructing the deterministic model.

Selection of auxiliary data

It would be ill-advised to use all auxiliary datasets from Table 4.1 in the deterministic model;

the resulting model would be an over-fit with problematic colinearity (e.g., Zucchini, 2000). We
instead use a statistical selection method to choose an optimal set of auxiliary datasets for the
deterministic model. These methods select as many datasets for X as can explain variability in
the methane fluxes but will prevent an over-fit or unreliable coefficient estimates. We implement
one of the most common methods, the Bayesian information criterion (BIC) (as in Gourdji et al.,
2012). The BIC numerically scores all possible combinations of auxiliary data based on how well
they reduce the model-measurement residuals and applies an increasing penalty for model com-
plexity (refer to the supplement). Specifically, this penalty increases with the number of columns

in X and with the log of the number of observations. Unlike frequentist statistics, these scores
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do not support p-values or traditional hypothesis testing. The best model is simply the one with
the lowest score. Kass & Raftery (1995) provide a qualitative assessment of model strength based
on the difference in BIC scores. A score difference greater than two is “worth mentioning” and
greater than 10 is “very strong.”

In many cases, one might expect that the product of two or more different environmental vari-
ables may be a better predictor than an additive model, so we test multiplicative interactions
among the wetland-related auxiliary datasets. Additionally, several of the auxiliary datasets are
co-linear (e.g., total soil moisture and unfrozen soil moisture), and we are careful not to include
similar or co-linear predictors in the same candidate model for X. For consistency, we do not mix

WRF and NARR datasets in the same candidate model.

4.4 Results and discussion

441 Model-data comparison using existing flux estimates

Methane concentrations modeled with existing flux estimates exhibit a variable fit against the
atmospheric data (see Fig. 4.2). For example, both the Kaplan and DLEM models match the gen-
eral shape of the seasonal cycle at eastern tower sites (LEF, FSD, CHM) but underestimate the
magnitude of the measurements. Among these sites, models match observations most closely

at Fraserdale, Ontario (FSD), possibly because Pickett-Heaps et al. (2011) validated the Kaplan
model at Fraserdale. Existing methane flux estimates, however, perform far worse at the western
sites (CDL and ETL). For example, the models underestimate both observed summer and winter
maxima at these sites. The observed summer maxima are likely caused by peak summer wetland
fluxes while the winter maxima likely reflect a combination of advected anthropogenic emissions
and limited vertical mixing within the troposphere. This result implies that existing inventories

underestimate both wetland and anthropogenic fluxes in western Canada.
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Figure 4.2: A comparison of modeled mixing ratios against measurements at the observation sites. The
estimated boundary condition values have been subtracted from the observations; the difference indi-
cates the effect of North American methane sources on the measurement sites. EDGAR v4.2 is an anthro-
pogenic emissions inventory while Kaplan and DLEM model wetlands. The model and observations are
smoothed using a 3™ order Savitzky-Golay filter with a 61-point window.
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The model-data comparison in Fig. 4.2 also reveals important conclusions about the interde-
pendence of wetland and anthropogenic emissions estimates. Gaps in anthropogenic emissions
inventories can affect the perceived amplitude or seasonality of the wetland flux model. Even in
remote regions like the HBL, the estimation of wetland fluxes hinges on a reliable anthropogenic
emissions estimate. For example, the Kaplan/EDGAR v4.2 modeled concentrations are consis-
tently too low at the Fraserdale site, but the amplitude of the summer maximum is similar to the
amplitude of the data. This discrepancy could reflect one of two problems: either the wetland
inventory has the incorrect magnitude and seasonal structure or the anthropogenic inventory
(EDGAR v4.2) is simply too low. The time series at Park Falls (LEF), Wisconsin, further illus-
trates the importance of the anthropogenic emissions estimate. It appears that the wetland flux
models begin producing methane too early in the spring of 2008 at LEE. A closer examination of
Fig. 4.2, however, reveals large (~25ppb) modeled concentrations from anthropogenic sources
during this period. This model-data discrepancy could stem from misspecified anthropogenic
emissions, not problems in the seasonal structure of the wetland model. These examples high-
light the difficulty of disentangling anthropogenic and wetland methane fluxes.

Subsequent sections discuss the deterministic model and geostatistical inversion results in

greater detail.

4.42 Environmental predictors of wetland fluxes

This section explores the results of the deterministic model (XB, section 4.3.1 and 4.3.2). As dis-
cussed in the methods sections, the deterministic model is analogous to a weighted multivari-
ate regression. Model selection methods (like the BIC, section 4.3.2) play a crucial role in con-
structing this deterministic model; they select auxiliary datasets (Table 4.1) for the deterministic
model that can best explain the atmospheric methane data. In this way, model selection provides

a means to objectively understand and assess biogeochemical methane models at continental
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scale.
The BIC selection chooses the following deterministic model for methane fluxes in Canada

(Table 4.2):
B, + By [smooth functions] + B, [W][M|fxapian(T)

This selected model for methane fluxes is relatively simple. The first term () is a constant
component, equivalent to the intercept in a regression. It describes the average magnitude of all
sources not explicitly included in other components of the deterministic model. For example,
this component might include agriculture, landfills, and wastewater treatment sources (among
other possibilities).

The second term (B, [smooth functions ...]) parameterizes anthropogenic sources (Section 4.3.2).
This term places smooth geometric functions over known source regions, including Alberta,
California, Oklahoma, and the US east coast. The BIC does not choose the EDGAR v4.2 anthro-
pogenic inventory for the deterministic model because it fits the atmospheric data less well than
the smooth geometric functions (Table 4.2). Hence, we do not utilize EDGAR within the atmo-
spheric inversion.

The final component of the deterministic model (B,[W][M|fgspian (T)) parameterizes wetland
fluxes. This term in the deterministic model includes three auxiliary datasets: the distribution
of wetlands (W), a map of unfrozen soil moisture (M), and an Arrhenius equation based upon
soil temperature (fgpiqn(T)). The optimal deterministic model uses the wetland map from the
LPJ model and soil variables from NARR (at 10cm soil depth). All other possible combinations
and interactions of the auxiliary variables in Table 4.1 produce higher BIC scores (Table 4.2). For
example, we test wetland models that include soil carbon, environmental variables at different
depths in the soil profile, and different estimates for wetland distribution. Furthermore, we test a

deterministic model that uses the functional form of temperature and /or soil moisture from the
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Table 4.2: BIC scores for a selection of candidate deterministic models. Note: We test all possible combi-
nations and interactions of the auxiliary variables in Table 4.1 and display only a sample here. The table
is intended to show the range of BIC scores for the best-scoring models and a few other notable models.
The drift coefficients (B) scale the magnitude of the auxiliary data to match the methane observations. All
models above use inputs from NARR (10cm depth) and LPJ, unless otherwise noted. fxzpian (- - - ) refers to
the functional form used in the Kaplan model fprepm(- - - ) the functional form in DLEM.

Candidate model BIC

B, + B, [tricubic functions| + B,[W|[M|fxapian(T) 16725
B, + B [tricubic functions] + B, [W][Mrot|fxapian(T) 16728
:80 + ﬁl [triCUbiC functions] + ﬁz [W] [MVKuplan (T)fKaplan (C) 16729
B, + B, [tricubic functions] + f,[full Kaplan model] 16735
B, + B, [tricubic functions] + B,[W][M]fapian (T) using NARR surface soil layer 16744
B, + B, [tricubic functions] + B,[W|fpream(M)fprem(T) 16750
By + B1[EDGAR v4.2] + B, [W][M|fkaptan(T) 16885

DLEM model.

This selected wetland model is similar to the Kaplan flux model but with soil carbon removed.
Section 4.4.4 synthesizes the wetland flux results from this study and highlights what this pa-
rameterized wetland model might indicate about biogeochemical methane modeling.

Table 4.3 lists the Canadian methane budget associated with each component of the determin-
istic model and compares these estimates against existing inventories. It is important to remem-
ber that the methane budgets from the deterministic model are estimated using the atmospheric
data — via the unknown coefficients, 8. The smooth functions represent the largest component
of the deterministic model, followed by the constant component and finally the wetland compo-
nent. When interpreting these budgets, however, it is important to note that the constant compo-
nent [30 could represent either anthropogenic emissions or wetland fluxes.

Figures 4.3 and 4.4 visualize the deterministic model, both spatially and in relation to the at-
mospheric methane data. Figures 4.3 displays the annual average of the deterministic model.
The smooth geometric functions to parameterize anthropogenic emissions are evident over the

province of Alberta and over the Dakotas. The wetland model is more difficult to distinguish
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Table 4.3: Canada methane budgets from the deterministic model (south of 65°N) and several inventory
estimates

Flux model Canada budget
(Tg Cyr )

Deterministic model

B, 54+15

B, [smooth functions] 7.9 4 0.9

B, W] M ficaptan (T) 32406
Existing wetland models

Kaplan model 4.4

DLEM model 5.6

Existing anthropogenic inventories
Environment Canada 3.3
EDGAR v4.2 3.9

in this annual mean plot but is largest south of Hudson Bay in eastern Canada and near Great
Slave Lake in Northwest Territories. The deterministic model is non-zero everywhere across
Canada, and this reflects the constant term f, of the deterministic model. This term has an es-

timated magnitude of 2 + 0.5 x10~3umol m~2 s7! (5.4 £ 1.5 TgC yr~! over Canada, Table 4.3).

Despite the simplicity of the deterministic model, the mixing ratios estimated with this model
match favorably against atmospheric measurements (Fig. 4.4). The deterministic model fits the
atmospheric methane observations (R = 0.72, root mean squared error (RMSE) = 20.9 ppb) better
than either the model setup with Kaplan and EDGAR v4.2 (R = 0.12, RMSE=37.1 ppb) or DLEM
and EDGAR v4.2 (R = 0.08, RMSE=37.2 ppb). The formulation of anthropogenic emissions in the
deterministic model may account for much of this improved fit against the atmospheric data.
Despite the improvement, the deterministic model displays two notable shortfalls. First, the
deterministic model does not reproduce the summer maxima observed at western observation

sites (CDL and ETL). Second, the deterministic model underestimates the summer maxima at the
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Figure 4.3: The 24-month (2 year) mean estimated methane flux from the deterministic model (top) and
the final posterior estimate (bottom).
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Wisconsin (LEF) and Quebec (CHM) observation sites. These shortfalls suggest that the spatial
distribution of wetland fluxes in the deterministic model may be too restrictive. In other words,
wetland fluxes likely extend further west, east, and south than in the deterministic model, which
places the largest wetland fluxes in the HBL.

Subsequent sections discuss the final methane flux estimate from the geostatistical inversion
(8). This final, best estimate (R = 0.89, RMSE=12.0 ppb) is henceforth referred to as the “posterior’

fluxes.

443 The spatial and temporal distribution of emissions

The posterior flux estimate identifies two major source regions in Canada (Fig. 4.3): over Al-
berta in western Canada and over the HBL in eastern Canada. This discussion analyzes each
geographic region individually.

In western Canada, the inversion identifies a large, seasonally-constant methane source re-
gion over Alberta. In the deterministic model, this source is represented by a smooth function.
But in the posterior estimate, this source region becomes a more well-defined crescent shape
over Alberta (Fig. 4.3). These emissions likely originate from anthropogenic activity, and a fu-
ture study will give an in-depth analysis of anthropogenic emissions in Canada. The posterior
flux estimate also includes a large summer source in Alberta and Saskatchewan. As discussed
previously, these fluxes are not represented by the auxiliary environmental datasets in the de-
terministic model. This omission in western Canada dominates the discrepancy in summertime
Canadian methane between the deterministic model and posterior fluxes (Fig. 4.5). The omission
implies that either the LPJ] wetland or the NARR soil moisture map is an underestimate in west-
erly regions of Canada. Unfortunately, the atmospheric data in this region has limited capabil-
ity to pinpoint the exact location of these western wetland fluxes; atmospheric observations are

sparse in western Canada, and wetland fluxes are co-located with large anthropogenic sources.
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Figure 4.4: A comparison of modeled mixing ratios against measurements at the observation sites. This
figure is similar to Fig. 4.2 but compares the deterministic model and posterior emissions estimate instead
of existing flux models.
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In sum, this study identifies Alberta as a region with poorly-known wetland fluxes and as a pos-
sible hot-spot of anthropogenic emissions. We recommend that future methane measurement
efforts focus on Alberta because this province is a key uncertainty in current understanding of
Canadian methane sources.

Eastern Canada, in contrast, is dominated by seasonal methane fluxes that presumably em-
anate from wetlands. Figure 4.5 compares the seasonal cycle of DLEM, Kaplan, the determinis-
tic model, and the posterior flux estimate over the HBL. The seasonal cycle of the deterministic
model and posterior flux estimate compare similarly to the Kaplan model but have a broader
seasonality than DLEM. The posterior flux estimate matches the Kaplan model more closely than
the deterministic model over the HBL (though the deterministic model is a better match than
Kaplan/EDGAR v4.2 in other regions of Canada and the northern US).

Seasonal structure aside, the flux models also diverge in spatial distribution. Figure 4.6 dis-
plays the mean summer (July, August, September) methane flux estimated by the inversion for
eastern Canada. It also displays the difference between this estimate and the DLEM and Kaplan
models. Our flux estimate is more spatially-dispersive than DLEM across the Hudson Bay re-
gion. The differences between the posterior estimate and Kaplan are more subtle. The posterior
estimate indicates methane fluxes across a broader region than Kaplan: into Minnesota, Wiscon-
sin, Manitoba, and further west.

Figure 4.7 summarizes the findings of this study as an annual methane budget estimate for the
HBL and for all of Canada (south of 65° latitude). Our methane estimate for Canada is a factor
of 1.5 to 2.2 times existing estimates. Anthropogenic emissions in western Canada may explain
much of this discrepancy. In contrast, our annual HBL budget is consistent with that of DLEM
and Pickett-Heaps et al. (2011) who use the Kaplan wetland model, but our estimate diverges
from a site-based study by Roulet et al. (1992) and a box model study by Worthy et al. (2000) (see

the supplement). Furthermore, the HBL budget estimated here is low compared to the array of
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Figure 4.5: The monthly average methane budget estimated for the HBL and Canada in 2007 — 2008. Exist-

ing models underestimate wetland fluxes in western Canada. This regional shortfall explains much of the
summertime discrepancy between the flux models and the posterior estimate in the lower panel.
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DLEM and Kaplan methane models.

79



biogeochemical models listed in Melton et al. (2013a). The HBL budgets in those models range
from 1.7 - 8.5 TgC yr~!. This range in wetland methane estimates in is likely greater than the
inter-annual variability in wetland fluxes. For example, Tian et al. (2010) estimate an 11% stan-

dard deviation in annual North American methane fluxes.

444 A synthesis perspective on biogeochemical methane models

This section explores the study’s implications for biogeochemical methane modeling. The inver-
sion results (e.g., section 4.4.2) raise the question of why a simple flux model fits the atmospheric
methane data as well as sophisticated process models. The deterministic model developed here
excludes a number of factors that can affect methane fluxes: soil carbon, plant-mediated trans-
port, and heterogeneities in microbial communities, among many other processes. This question
could be answered in two ways.

First, simple parameterizations may be sufficient when regional-scale flux patterns are the pri-
mary goal. For example, a synthesis study of existing chamber measurement sites found that
methane fluxes across all sites are influenced most strongly by only a few environmental vari-
ables: water table height, soil temperature, and vegetation type (Olefeldt et al., 2013). Further-
more, Bubier et al. (1993) and Waddington & Roulet (1996) argue that most centimeter-scale flux
variability ultimately depends on two primary parameters: temperature and water table posi-
tion. These studies imply that a simple model may adequately parameterize regional-scale flux
variability.

A second reason may account for the simplicity of the deterministic model. Complex methane
flux processes can be challenging to upscale, meaning that the most complete methane model
is not always the most accurate at regional scales. The spatial distribution of many flux-related
processes is highly uncertain (e.g. Melton et al., 2013a) due to a paucity of both land surface

and methane flux data. This uncertainty means that models with many processes and parame-
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Figure 4.7: Total methane budgets from this study and others for the HBL and for Canada. The HBL es-
timates listed here are from DLEM and from observational studies. Melton et al. (2013a) list numerous
additional model-based HBL methane budgets, which range from 1.7 — 8.5 TgC yr~!. ‘Env. Canada’ refers
to Environment Canada’s National Inventory Report [2013]. The confidence intervals for this study do
not encompass uncertainties in model selection and therefore may underestimate the total budget uncer-
tainty.
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ters could run the risk of over-fitting limited, available data (A paper by Zucchini (2000) illus-
trates the hazards of over-fitting.). For example, a number of physical processes like ebullition,
plant-mediated transport, and microbial community dynamics are all thought to play a role in
methane emissions (Bridgham et al., 2013, and references therein), but how these processes or
features vary on regional spatial scales is often poorly understood.

To that end, model selection methods, like the BIC used here, provide a means to diagnose
weaknesses in flux model upscaling from plot-level to regional or continental scale (e.g. Olefeldt
et al.,, 2013). Model selection methods choose the set of predictors that can best explain variabil-
ity in any available methane data. If model selection does not choose a given predictor, that out-
come implies one of several conclusions. Either the distribution of the predictor does not match
against the distribution implied by the methane data, or the available methane data is insuffi-
cient to constrain the effect of that predictor. In either case, any conclusions based upon the pre-
dictor would likely over-fit the available data at the expense of describing the large-scale flux

process of interest.

4.5 Conclusions

This study uses atmospheric methane observations and geostatistical inverse modeling to un-
derstand North American boreal methane fluxes and associated biogeochemical models. The
conclusions of this study fall under three general themes. First, we find that a simple wetland
flux model, when combined with WREF-STILT, provides as good agreement with atmospheric
methane observations as more complex flux process models. This result may have several pos-
sible causes: either simple models adequately parameterize regional-scale flux patterns, or the
spatiotemporal distribution of important but complex flux processes is difficult to accurately

model with available data at this geographic scale.
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Second, we estimate both the spatial and seasonal distribution of methane fluxes over much of
boreal North America. We find wetland fluxes that are more broadly distributed than in existing
inventories, even extending into Minnesota, Wisconsin, Manitoba, and western Canada. This
result implies that existing maps may under-represent the extent of soil moisture and/or the
distribution of wetlands.

Finally, we calculate regional and Canadian methane budgets. Our HBL budget is on the up-
per range of observational studies but the lower range of biogeochemical model estimates (Fig.
4.7 and Melton et al. (2013a)). In addition, we estimate total Canadian emissions that exceed ex-
isting inventories, largely due to sources in or near Alberta. Available atmospheric data is lim-
ited near Alberta during the study period, and this work highlights a need for more intensive

methane measurements over that region.
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5

The ability of atmospheric data to resolve discrepancies in wet-

land methane estimates over North America

This chapter has been submitted for publication in the journal Biogeosciences Discussions.

Existing estimates of methane fluxes from North American wetlands vary widely in both magni-
tude and distribution. In light of these disagreements, this study uses atmospheric methane ob-
servations from the US and Canada to analyze seven different bottom-up, wetland methane esti-
mates reported in a recent model comparison project. We first use synthetic data to explore how
well atmospheric observations can constrain wetland fluxes. We find that observation sites can
identify an atmospheric pattern from Canadian wetlands but not reliably from US wetlands. The
network can also identify the spatial distribution of fluxes in Canada at multi-province spatial
scales. Based upon these results, we then use real data to evaluate the magnitude, temporal dis-
tribution, and spatial distribution of each model estimate. Most models overestimate the magni-
tude of fluxes across Canada. Most predict a seasonality that is too narrow, potentially indicat-

ing an over-sensitivity to air or soil temperatures. In addition, the LPJ-Bern and SDGVM mod-
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els have a spatial distribution that is most consistent with atmospheric observations, depend-
ing upon the season and region. Unlike most models, LPJ-Bern and SDGVM utilizes land cover
maps, not just remote sensing inundation data, to estimate wetland coverage. A flux model with

a constant spatial distribution outperforms all other existing flux estimates across Canada.

5.1 Introduction

Methane fluxes from wetlands play a critical role in global climate change. Methane is the second-

most important long-lived greenhouse gas; the radiative forcing of the current atmospheric bur-

den is approximately 26% of carbon dioxide. Wetlands are possibly the largest single source of

this gas to the atmosphere and account for roughly 30% of global emissions (Ciais et al., 2013).
Despite the important role of wetland methane fluxes in climate change, existing estimates of

this source disagree markedly on the magnitude, seasonality, and spatial distribution of fluxes,

from regional to global scales. In fact, a recent global model comparison project named WETCHIMP

(Wetland and Wetland CH4 Inter-comparison of Models Project) found large discrepancies among

existing methane wetland models (Fig. 5.1, Melton et al., 2013a; Wania et al., 2013). For exam-

ple, existing estimates of maximum global wetland coverage differ by over a factor of 6 — from

4.1 x10° to 26.9 x10° km?. Furthermore, estimates of global natural wetland fluxes range from

92-264 Tg CHy4 yr~!. The relative magnitude of these uncertainties increases at sub-global spa-

tial scales. As a case in point, methane estimates for Canada’s Hudson Bay Lowlands (HBL)

range from 0.2 to 11.3 Tg CHy yr~!. These disagreements in current methane estimates do not

bode well for scientists” abilities to accurately predict future changes in wetland fluxes due to

climate change (Melton et al., 2013a). A number of studies have used chamber measurements

of methane to parameterize or evaluate biogeochemical methane models (e.g., Livingston &

Hutchinson, 2009). However, these measurements usually encompass fluxes from a very small
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Figure 5.1: Mean of the annual methane fluxes estimated by the WETCHIMP models (a) and the range of
fluxes estimated by the ensemble (b). Note that the range in estimates is larger than the mean. The fluxes
shown above are averaged over an entire grid cell, not per m? of wetlands.

spatial scale, and fluxes can vary by an order of magnitude over one meter or less (Waddington
& Roulet, 1996; Hendriks et al., 2010). Methane data collected in the atmosphere, by contrast,
sees the cumulative effect of methane fluxes across a much broader region (e.g., Kort et al., 2008;
Pickett-Heaps et al., 2011; Miller et al., 2014c). Hence, atmospheric data can provide an important
tool for evaluating existing methane flux estimates across different countries or continents.

The present study compares the WETCHIMP methane flux estimates against atmospheric
methane data from 2007-2008 through two sets of analyses. First, we construct progressively
demanding synthetic data experiments to explore how well available data can constrain wet-
land fluxes. Can the atmospheric data identify methane patterns from wetlands over distracting
patterns in the atmosphere? These patterns include methane from anthropogenic sources or ran-
dom noise due to model and measurement errors. If yes, can the observation sites detect spatial
variability in the wetland fluxes? We seek to understand whether large uncertainties in wetland
methane estimates point to a paucity of methane data — data capable of calibrating or evaluat-
ing the models. In the alternative, perhaps these disagreements would be much smaller if exist-
ing biogeochemical models leveraged all available data. To answer these questions, we utilize a

modeling approach based upon the Bayesian Information Criterion (BIC), described in greater
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detail in Sect. 5.2.2 (Shiga et al., 2014; Fang et al., 2014).

Based on the synthetic experiments, we conduct a second set of analyses using real atmo-
spheric data. We use this data to evaluate the magnitude, seasonal cycle, and spatial distribution
of each WETCHIMP methane estimate. Of the seven available models, which have a magnitude,
seasonal cycle, or spatial distribution that is most consistent with the available data? We investi-
gate this question over the United States and Canada using methane data collected from towers
and regular aircraft flights operated by NOAA and its partners and from towers operated by En-

vironment Canada.

5.2 Methods

This section first describes the atmospheric methane data and the atmospheric model that allows
direct comparison between the data and various flux estimates. Subsequent sections describe
how we use these tools to construct both the synthetic and real data experiments outlined in the

introduction (Sect. 5.1).

5.2.1 Data and atmospheric model

The present study utilizes atmospheric methane observations at Environment Canada and NOAA
observation sites (Fig. 5.2). These include regular measurements from tower and aircraft plat-
forms, a total of 14,703 observations from 2007-2008. The observations used here are identical to
those in Miller et al. (2013) and Miller et al. (2014c¢).

We then employ an atmospheric transport model to relate methane fluxes at the Earth’s sur-
face to atmospheric concentrations at the observation sites. The modeling approach here com-
bines the Weather Research and Forecasting (WRF) meteorological model and a particle-following

model known as STILT, the Stochastic Time-Inverted Lagrangian Transport model (e.g., Lin
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Figure 5.2: The NOAA and Environment Canada atmospheric methane observation network for 2007
2008 (14,703 total observations). Small yellow dots indicate observations from the START08 measurement
campaign (Pan et al., 2010). Larger dots indicate tower and aircraft sites with regular observations over
the two year period (Andrews et al., 2014). The grey background delineates the four regions used in the
synthetic experiments (sect. 5.2.3).

et al., 2003; Nehrkorn et al., 2010; Hegarty et al., 2013). WREF-STILT generates a set of footprints;
these footprints quantitatively estimate the sensitivity of each observation to fluxes at each sur-
face location (with units of ppb per unit surface flux). We multiply the footprints by a flux model
and add this product to an estimate of the ‘background’ concentration — the methane concen-
tration of air entering the North American regional domain. The resulting modeled concentra-
tions can be compared directly against atmospheric methane observations. This modeling setup
is identical to Miller et al. (2013) and Miller et al. (2014c). Both the observations and the WRE-
STILT model are described in greater detail in those papers and in the supplement.

Using this setup, we can compare predicted methane concentrations using the WETCHIMP
flux estimates (Fig. 5.1) against observed atmospheric concentrations. Of the WETCHIMP mod-
els, seven provide a flux estimate for boreal North America and six provide an estimate for tem-
perate North America. These models include CLM4Me (Riley et al., 2011), DLEM (Tian et al.,

2010), LPJ-Bern (Spahni et al., 2011), LPJ]-WHyMe (Wania et al., 2010), LPJ-WSL (Hodson et al.,
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2011), ORCHIDEE (Ringeval et al., 2010), and SDGVM (Singarayer et al., 2011). All model out-
puts have a temporal resolution of one month. These models are described in Melton et al. (2013a),

Wania et al. (2013), and the Supplement.

5.2.2 Model selection framework

This study employs two synthetic data experiments to explore the sensitivity of atmospheric ob-
servations to wetland fluxes: can the observations detect an atmospheric pattern from wetlands
fluxes over distracting patterns from anthropogenic emitters? If yes, can the observations detect
spatial variability in wetland fluxes from different regions? We build a modeling approach based
upon the BIC to answer these questions.

The BIC is a model selection technique, and various forms of the BIC are used widely in sta-
tistical regression analysis (e.g., Schwarz, 1978; Ramsey & Schafer, 2012). It scores all possible
combinations of explanatory variables based on model-data fit, and it penalizes combinations
that have a greater number of variables. The best combination or candidate model has the lowest
BIC score.

We use a form of the BIC that has been adapted for use within a geostatistical inverse model-
ing framework (e.g., Gourdji et al., 2008; Miller et al., 2014c). The implementation here parallels
that of Fang et al. (2014) and Shiga et al. (2014):

BIC = In|W|+ (z— HXB)'W1(z — HXB) + p In(n) (5.1)
——
negative log—likelihood penalty term

The first term in Eq. 5.1 is the negative log-likelihood, a measure of how well the model fits the
data. In that term, z (n x 1) represents the observations minus background concentrations, H
(n x m) the footprints, X (m x p) a matrix of p explanatory variables, p (p x 1) a set of coefficients

assigned to those variables, and W (n x n) a covariance matrix derived from an atmospheric in-
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version framework. The data (z), footprints (H), and parameters that define the covariance ma-
trix (W) are taken from Miller et al. (2013) and Miller et al. (2014c) (refer to the Supplement). The
second term in Eq. 5.1 penalizes the BIC score of a particular model based upon the number of
explanatory variables (p).

We employ this model selection framework to understand which explanatory variables from
an anthropogenic emissions inventory and from the WETCHIMP ensemble are required to de-

scribe either synthetic or real methane data at North American observation sites.

5.2.3 Synthetic data experiments

The experiments described in this section use synthetic data generated at each of the observation
sites. We use anthropogenic emissions estimates for the US and Canada from Miller et al. (2013)
and Miller et al. (2014c), respectively, and use one of the WETCHIMP models as the wetland flux
estimate. We then multiply these fluxes by H to create the synthetic data at the measurement
locations. We further add in randomly-generated error — error that represents uncertainties in
the fluxes, the measurements, and the atmospheric transport model, among other error sources.
These errors are estimated by Miller et al. (2013) and Miller et al. (2014c) and are described in the
Supplement.

The synthetic experiments ask progressively demanding questions that test the limits of avail-
able data. In experiment one, we examine whether methane observations in different regions
of North America can detect methane patterns in the atmosphere due to wetland fluxes. When
given multiple possible explanatory variables (including data from the EDGAR anthropogenic
emissions inventory), will the model selection framework choose a wetland estimate? If yes,
the observations can identify a pattern in atmospheric methane due to wetland fluxes and that
pattern is large enough to be visible over other signals in the atmosphere. If not, then either

the contribution of wetlands at that site is small, or the observations cannot differentiate atmo-
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spheric patterns due to wetlands over other atmospheric patterns due to anthropogenic sources
or model-measurement errors. This setup follows Shiga et al. (2014), who explored the detectabil-
ity of atmospheric patterns from anthropogenic CO, emissions.

For this test, we generate the synthetic data using one of the WETCHIMP models. We then
allow the model selection framework to select wetland fluxes and /or the EDGAR data used
to generate the synthetic fluxes. We divide the wetland fluxes into four regions (Fig. 5.2) and
four seasons (winter, spring, summer, fall). The model selection can choose none, some, or all
of these sixteen wetland variables. We run this experiment 1000 times, generating new synthetic
data each time, and calculate the percentage of all trials in which the model selection chooses a
wetland model. In this experiment, the coefficients (B) are fixed to one. Note that several of the
WETCHIMP models overestimate the magnitude of fluxes (Sect. 5.4.2), so we only use models
with a smaller magnitude to generate the synthetic data in this experiment (CLM4Me, DLEM,
SDGVM, and LPJ-WSL).

In experiment two, we investigate whether the observation network is sensitive to spatial vari-
ability in the wetland fluxes, independent of magnitude or seasonality. In this setup, we do not
fix the coefficients (B) but rather estimate coefficients that minimize the log-likelihood in Eq. 5.1.
We also include a spatial constant or intercept term in X that can change by month. As a result
of this setup, the magnitude and seasonality of the intercept can be adjusted to match the data,
but any spatial variability in the fluxes can only come from the wetland model. As in experi-
ment one, the model selection framework can choose among 16 wetland variables — variables
that represent different regions and seasons. If model selection chooses a wetland variable, then
the spatial distribution in that variable is necessary to reproduce the synthetic data. If not, then
the observations are not sensitive to spatial variability in wetland fluxes for that region/season.
This approach follows that of Fang et al. (2014), who employed a model selection framework to

evaluate the spatial distribution of biospheric CO; flux models.
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524 Real data experiments

If experiment two is successful on synthetic data, we then apply the experiment to real data. We
use the model selection framework to determine which, if any, bottom-up models have a spatial
distribution that can describe the methane observations more effectively than a spatial constant.

We also include a number of model-data time series to evaluate both the magnitude and sea-
sonality of the fluxes. We model methane concentrations at a number of US and Canadian ob-
servation sites using WRF-STILT, WETCHIMP, and EDGAR v4.2FT2010 (Olivier & Janssens-
Maenhout, 2012; European Commission, Joint Research Centre (JRC)/Netherlands Environ-
mental Assessment Agency (PBL), 2013). We average the observations and model output at the
monthly scale and then compare the magnitude of these model estimates for each month against
the averaged observations.

Several studies indicate that EDGAR may underestimate emissions in certain regions of the
US and Canada (e.g., Kort et al., 2008; Miller et al., 2013, 2014c; Wecht et al., 2014). Therefore, we
scale the magnitude of EDGAR v4.2FT2010 to match wintertime observations (November—April)
at each site using a standard major axis (SMA) regression. During those months, fluxes from
wetlands are small and any model biases are likely due to anthropogenic emissions. We then
apply this scaling factor, estimated for each site from winter data, to anthropogenic emissions
in all seasons. Miller et al. (2013) found that anthropogenic emissions in the US lack significant
seasonality, so the wintertime scaling factors should be applicable to other seasons.

We further compare the seasonality of existing bottom-up models against the seasonality of a
recent inverse modeling estimate by Miller et al. (2014c). We plot the monthly methane budget
as a fraction of the annual total for both the bottom-up models and the inversion estimate. We
only conduct this analysis for wetland flux regions that are visible to the observation network

(synthetic experiments one and two).
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Note that inter-annual variability in existing methane flux models is small relative to the dif-
ferences among these models; as a result, conclusions from the 2-year study period (2007-2008)
likely hold for other years. For example, the inter-annual variability in the total US/Canadian
budget is £7.3 — 9.7% (standard deviation), depending upon the model in question (Note that
LPJ-Bern has even larger inter-annual variation due to an issue with model spin-up (Wania et al.,

2013).).

5.3 Results and discussion: synthetic experiments

The synthetic experiments presented here explore the limits of existing atmospheric data for con-
straining wetland fluxes. We first leverage synthetic data to examine whether the atmospheric
observation sites can distinguish an atmospheric pattern from wetland fluxes above other pat-
terns due anthropogenic emissions or simulated model, measurement, and emissions uncertain-
ties. If atmospheric observations are to constrain wetland methane fluxes, those observations
must, at minimum, identify an atmospheric pattern from wetland fluxes from other distracting
patterns in the model and/or data.

The results of this experiment are summarized in Fig. 5.3a. The four columns in Fig. 5.3a dis-
play the results from an individual season in each of four geographic regions. In this experiment,
the observation network can detect a summertime methane pattern from wetlands in both East-
ern and Western Canada in greater than 75% of all trials. In the eastern US, the model selection
framework chooses a wetland model in 50-75% of all trials in multiple different seasons. By con-
trast, the observations are least sensitive to wetland fluxes in the western US, and the model se-
lection framework chooses wetland fluxes from that region in less than 25% of all trials irrespec-
tive of the season. This result may be due, in part, to the relatively dry climate and scant wet-

lands in much of the west. The methane signal from resource extraction and/or agriculture may
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Figure 5.3: This figure displays the results of the synthetic data experiments. These experiments examine
whether the observation network can (a) identify a methane pattern from wetland fluxes and (b) iden-
tify spatial variability in the wetland fluxes. The figure shows the percentage of trials that are successful.
Darker shades indicate that the network is more sensitive to fluxes in the given region and season.

also overshadow any patterns from wetlands.

The results also contain a number of seasonal trends. Of any region, the observation network
is best able to constrain the seasonal cycle in eastern Canada. The largest wetland fluxes esti-
mated for the US and Canada are in Ontario and Quebec. It is therefore unsurprising that the
network is so sensitive to fluxes from this region, even though there are relatively few observa-
tion sites within the region. In other regions, the observation network is less sensitive to wet-
lands during the winter, fall, and spring seasons. For example, the model selection framework
chooses a wetland model in less than 25% of all trials during the winter in all regions.

The density of the observation network may also play a role in these results. Wetlands in the
Eastern US are sparse relative to Canada, but the higher density of observations in the Eastern
US may contribute to a relatively high success rate for that region. A recent observation network

expansion could play a key role in future efforts to constrain wetland fluxes across these regions.
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Environment Canada has recently been expanding their observation network across western and
Arctic Canada (i.e., Saskatchewan, Alberta, Northwest Territories, and Nunavut). In addition,
Earth Networks has begun to install new observation sites across the eastern US in a privately-
funded initiative.

Compared to experiment one, the second experiment asks a more demanding question of the
observation network: is the observation network sensitive to spatial variability in the wetland
fluxes from each region? Alternately, can a spatially-constant model reproduce the synthetic at-
mospheric observations as well? Existing bottom-up estimates disagree markedly on the spatial
distribution of wetland fluxes, but perhaps atmospheric data can provide guidance.

Figure 5.3b displays the results of this experiment for each region and season. The available
data is only sensitive to spatial variability in certain cases. The model selection framework chooses
a wetland model in > 75% of all trials in eastern Canada during summer and fall and in western
Canada during summer. Eastern Canada is the only region that can distinguish different spa-
tial patterns in the shoulder seasons. In remote regions of northern Ontario and Quebec, large
wetland fluxes dominate variability in atmospheric methane. Hence, it is understandable that
observations are most sensitive to the spatial distribution of fluxes in this region. By contrast,
the observation network is largely insensitive to spatial variability in wetland fluxes across the
US; in most instances, the model selection framework favors a spatially-constant model over a
wetland model for the two US regions.

These results indicate that the observation network has limited capacity to evaluate wetland
fluxes over the United States. Across Canada, the results are far more promising, despite the
relative sparsity of the observation network there. Existing bottom-up methane estimates are
highly uncertain across Canada, and the synthetic experiments indicate that atmospheric obser-

vations can reduce these uncertainties.
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Table 5.1: Spatial patterns chosen by the model selection framework

Region season  Models chosen over a constant model name(s)
E.Canada summer 1o0f7 LPJ-Bern

E. Canada fall 0of7

W. Canada summer 2of7 LPJ-Bern, SDGVM

5.4 Results and discussion: comparisons with atmospheric data

5.4.1 Spatial flux patterns

We first compare the spatial distribution of the existing wetland flux estimates against methane
data from the atmospheric observation network. We apply experiment two to real data and re-
port the results for regions and seasons that had a high success rate in the synthetic experiment.
That experiment examined whether the spatial variability in a wetland model is more useful

at describing the atmospheric data than a spatial constant. We now apply this question to real
data: do the WETCHIMP models have spatial variability that describe the real data better than a
spatial constant? If so, which models? This approach indicates whether each model contributes
positive information on the location of wetland fluxes or if a spatial constant is a more effective
descriptor.

The results of this real data experiment are displayed in Table 5.1. This table only lists the re-
gions and seasons that had a success rate >75% in synthetic data experiment two. If a wetland
model describes the distribution of fluxes better than a spatial constant in those regions/seasons,
then the model selection framework should select that model.

Only a small number of WETCHIMP models are able to describe the distribution of wetland
fluxes (as seen via the atmospheric observations) better than a spatial constant — between 0 — 28%
of the available models depending upon the region and season. The model selection framework

chooses LPJ-Bern in eastern Canada and LP]-Bern and SDGVM in western Canada. The spa-
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tial patterns in the remaining WETCHIMP models do not perform better than a spatial constant
when compared to atmospheric data.

The LPJ-Bern and SDGVM models have several unique spatial characteristics that could ex-
plain these results. Over eastern Canada, the LPJ-Bern model concentrates the largest fluxes
in the HBL. Other models, by contrast, often distribute the fluxes more broadly across Ontario
and Quebec or put the largest fluxes in Ontario outside of the HBL. In western Canada, the LPJ-
Bern and SDGVM models distribute fluxes broadly across both northern Saskatchewan and Al-
berta. A number of other estimates like DLEM or CLM4Me assign relatively small fluxes in these
provinces relative to other regions.

The LPJ-Bern and SDGVM models share another common characteristic: both model wetland
area independently instead of relying solely on remote sensing inundation datasets. LPJ-WSL,
ORCHIDEE, DLEM, and CLM4Me use remote sensing inundation datasets like GEIMS (Global
Inundation Extent from Multi-Satellites, Prigent et al., 2007) to construct a wetland map. Other
models, like LPJ-Bern, LPJ-WHyMe, and SDGVM also use land cover maps and/or land sur-
veys to estimate wetland (or at least methane-producing) area (Melton et al., 2013a; Wania et al.,
2013). Wetland maps generated using the two approaches show substantial differences. Remote
sensing datasets estimate relatively high levels of inundation in regions of Canada that are non-
forested or have many small lakes (see further discussion in Melton et al., 2013a; Bohn et al.,
2015). Independently-generated wetland maps, by contrast, assign more wetlands over regions
with high water tables but little surface water. As a result of these differences, models like LPJ-
Bern assign more wetlands and methane fluxes in the Hudson Bay Lowlands relative to other

regions of Eastern Canada.
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5.4.2 Flux magnitude

We next compare the magnitude of predicted concentrations using the WETCHIMP models
against atmospheric observations. Unlike previous sections that utilized model selection, this
section employs several simple model-data timeseries, displayed in Fig. 5.4. We model methane
concentrations at a number of US and Canadian observation sites using WRF-STILT, the WETCHIMP
flux estimates, and anthropogenic emissions from the EDGAR v4.2FT2010 inventory. This model
estimate consists of several components: the background (in green) is the estimated concentra-
tion of methane in clean air before entering the model domain as in Miller et al. (2013) and Miller
et al. (2014c). The estimated contribution of anthropogenic emissions from EDGAR v4.2FT2010
is added to this background (in red). Note that the estimated scaling factors for EDGAR (Sect.
5.2.4) are 1.7 &+ 0.3 at Chibougamau, 5.6 & 0.5 at East Trout Lake, 2.4 + 0.3 at Fraserdale, and

2.5 + 0.3 at Park Falls. The contribution of wetland fluxes from the WETCHIMP models is then
added to the previous inputs, and the sum of all components (blue lines) can be compared di-
rectly against measured concentrations.

The various WETCHIMP flux estimates produce very different modeled concentrations at the
observation sites (Fig. 5.4). Overall, modeled concentrations with the WETCHIMP fluxes usu-
ally exceed the methane measurements during summer. At Chibougamau, Fraserdale, and Park
Falls in early summer, all six WETCHIMP models predict methane concentrations that equal or
exceed the observations. The ORCHIDEE, LPJ-WHyMe, and LPJ-Bern models always exceed the
measurements during summer while DLEM and SDGVM better match the observations at these
sites. In contrast to these results, a recent study by Bohn et al. (2015) found that the ensemble av-
erage is not biased over the Western Siberian Lowlands relative to inverse modeling estimates.
The models also show a large spread in that region.

Methane models that overestimate fluxes in North America do not always compensate with
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Figure 5.4: These time series compare atmospheric methane measurements at several observation sites
against model estimates using the WETCHIMP ensemble and the EDGAR v4.2FT2010 anthropogenic
emissions inventory. The range of estimates from the various WETCHIMP models is large.
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smaller fluxes elsewhere. For example, the ORCHIDEE model not only estimates large fluxes

over North America but also estimates higher fluxes over the tropics than any other model (Melton
et al., 2013a). Hence, the disagreement in magnitude over North America not only reflects un-
certainty in the global distribution of wetland fluxes but also reflects uncertainty in the global

wetland budget.

5.4.3 Seasonal cycle

Bottom-up methane flux estimates show variable performance when compared against atmo-

spheric observations, and the temporal distribution of these estimates is no exception. Figure 5.5
compares the seasonal cycle of the existing estimates over Canada’s HBL. Eastern Canada is one
of the largest wetland regions in North America (Fig. 5.1), and unlike other regions, the observa-

tion network there can detect a clear wetland signal through most of the seasonal cycle (Fig. 5.3).

In this region, the bottom-up estimates diverge on the seasonal cycle of fluxes. Most esti-
mates predict peak fluxes in July or August, though two variations of the LP] model predict sea-
sonal peaks in September and October (LPJ-WHyMe and LP]-Bern, respectively). Discrepancies
among models are also notable during the fall and spring seasons. For example, fluxes in June
account for anywhere between 6% and 21% of the annual methane budget, depending upon the
model. Fluxes in October account for between 1% and 23% of the annual budget.

The figure also displays the seasonality of an inverse modeling estimate from Miller et al.
(2014c) for comparison. That estimate incorporates observations from Chibougamau and Fraserdale,
atmospheric measurement sites that are strongly influenced by fluxes from the HBL. The dis-
crepancies among the WETCHIMP models often exceed the 95% confidence interval of the in-
version estimate (Miller et al., 2014c). On whole, the WETCHIMP estimates have a narrower

seasonal cycle than the inversion estimate, which assigns comparatively larger fluxes to the fall
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Figure 5.5: The seasonal cycle in methane fluxes estimated for the Hudson Bay Lowlands (HBL; 50-60°N,
75-96°W). We include both the WETCHIMP estimates and an inverse modeling estimate from Miller et al.
(2014c). Each month is displayed as a percentage of the annual budget estimated by a given model. This

approach highlights differences in the seasonality of the models and controls for differences in magnitude.
In general, the WETCHIMP models estimate a narrower seasonal cycle relative to Miller et al. (2014c).

and spring shoulder seasons. A recent inverse modeling study of the Western Siberian Lowlands
found parallel results for that region — existing models also under-predict the shoulder seasons
relative to summer months (Winderlich, 2012; Bohn et al., 2015).

Numerous possible explanations could underly this discrepancy. For example, the bottom-
up models could be too sensitive to soil/air temperature, and may therefore shut off methane
emissions too early. Compared to the inversion estimate, the bottom-up models predict small
or minimal fluxes during fall/spring months when air temperatures are near freezing but soils
are still unfrozen (Fig. C.3). According to estimates from the North American Regional Reanaly-
sis (NARR) (Mesinger et al., 2006), surface soils in the HBL (0 and 10cm depth) begin to thaw in
April and are largely unfrozen in May (Fig. C.3). In the fall, surface soils (0 cm depth) begin to
freeze in November, but deeper soils (10cm and 40cm) remain largely unfrozen until December.

Compared to the bottom-up models, the inversion estimate predicts a wider seasonal window, a
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result that is consistent with soil freeze /thaw.

5.5 Conclusions

A recent model comparison study revealed substantial differences in existing estimates of wet-
land methane fluxes — differences at global to regional scales. In the first component of this study,
we use two increasing stringent synthetic data experiments to understand how sensitive the at-
mospheric observation network is to regional-scale wetland fluxes. We find that the network
can reliably identify an atmospheric pattern from Canadian wetlands. The network can identify
a methane pattern from the eastern US in a majority (though not all) trials and rarely from the
western US. The network can also detect spatial variability in the Canadian wetland source but
rarely in the US wetland source. This analysis also accounts for distracting signals or patterns in
the atmosphere from anthropogenic sources or simulated modeling errors. These results indicate
that uncertainties in current methane models can be reduced, if those models begin to leverage
available methane data. Furthermore, these discrepancies indicate a disconnect between scien-
tists who build process-based and/or biogeochemical models and scientists who collect or use
atmospheric methane data. Improved collaboration between these two groups could help reduce
present uncertainties in natural methane fluxes, at least over Canada.

In a second component of the study, we evaluate each existing bottom-up methane model at
regional scale using real atmospheric data. We find that only 0-28% of all models have a spa-
tial pattern that describes the atmospheric data more effectively than a constant. The LPJ-Bern
and SDGVM models have spatial distributions that are most consistent with atmospheric ob-
servations, depending upon the region and season of interest. In addition, almost all existing
models overestimate the magnitude of wetland methane fluxes when compared against atmo-

spheric data at individual observation sites. The ensemble of models also appears to estimate
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a seasonal cycle that is too narrow across the HBL, a large region of methane fluxes in North
America. Overall, this study indicates numerous areas for improvement in existing bottom-up

wetland methane estimates.
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6

Atmospheric inverse modeling with known physical bounds:

an example from trace gas emissions

This chapter originally appeared as a research article in the journal Geoscientific Model Development. For

the original article, refer to Miller et al. (2014a).

Many inverse problems in the atmospheric sciences involve parameters with known physical
constraints. Examples include nonnegativity (e.g., emissions of some urban air pollutants) or up-
ward limits implied by reaction or solubility constants. However, probabilistic inverse modeling
approaches based on Gaussian assumptions cannot incorporate such bounds and thus often pro-
duce unrealistic results. The atmospheric literature lacks consensus on the best means to over-
come this problem, and existing atmospheric studies rely on a limited number of the possible
methods with little examination of the relative merits of each.

This paper investigates the applicability of several approaches to bounded inverse problems.
A common method of data transformations is found to unrealistically skew estimates for the

examined example application. The method of Lagrange multipliers and two Markov chain
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Monte Carlo (MCMC) methods yield more realistic and accurate results. In general, the exam-
ined MCMC approaches produce the most realistic result but can require substantial computa-
tional time. Lagrange multipliers offer an appealing option for large, computationally intensive
problems when exact uncertainty bounds are less central to the analysis. A synthetic data inver-
sion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each

approach.

6.1 Introduction

Inverse modeling and data assimilation have become ubiquitous in the atmospheric sciences,
and one of the most common applications is the estimation of trace gas surface fluxes. These
top-down approaches optimize emissions or flux estimates such that modeled atmospheric con-
centrations reproduce observed concentrations. Most methods are based on Bayesian statistical
principles and assumptions of Gaussian probability density functions (pdfs), implemented in

a variety of ways (e.g., Gurney et al., 2002; Michalak et al., 2004; Henze et al., 2007; Peters et al.,
2007; Gourdji et al., 2008; Stohl et al., 2012).

Many applications require estimating emissions or fluxes that have known physical limits, of-
ten referred to simply as inequality constraints. For example, there are few anthropogenic sinks
of carbon dioxide or methane, and the release history of air toxins from an industrial hazard site
is never negative. In many cases, predicted sources that violate inequality constraints are not
only meaningless but distort prediction in surrounding regions or times. For example, if an in-
version estimates an unrealistic negative emissions region, emissions in adjacent regions may
become larger than expected due to mass conservation (e.g., Michalak, 2008). Hence, it would
not be sufficient to simply reset negative emissions to zero. Doing so would not correct for dis-

torted sources elsewhere and would erroneously increase the overall estimated emissions budget
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(i.e., would violate the mass balance or budget as constrained by the atmospheric observations).

Additionally, enforcing inequality constraints is often necessary for obtaining realistic uncer-
tainty estimates. Even if the posterior emissions themselves do not violate the inequality con-
straints, their confidence intervals could very well extend beyond known limits under Gaussian
assumptions. In such cases, an unconstrained inversion will produce both upper and lower con-
fidence intervals that are unrealistically large (e.g., Snodgrass & Kitanidis, 1997; Michalak & Kitanidis, 2003).
The problem occurs because unrealistically low emissions within the lower confidence interval
must be balanced by larger emissions elsewhere in the upper confidence interval, or vice versa.

In response to the problems associated with unconstrained inversions, existing trace gas flux
estimation studies typically use one of four methods to apply inequality constraints. One method
employed in previous studies is a data transformation (refer to Sect. 6.3.1, e.g., Muller & Stavrakou,
2005; Bergamaschi et al., 2009). A second method decreases the uncertainty assigned to many
of the prior fluxes until the posterior fluxes obey the known bounds (e.g., Eckhardt et al., 2008;
Stohl et al., 2012). This adjustment may run counter to the modeler’s physical understanding of
the prior estimate or associated uncertainties and therefore is not discussed in great detail here.

A third method is that of Lagrange multipliers (refer to Sect. 6.3.2, e.g., Henze et al., 2007; Kopacz
et al., 2009; Gockede et al., 2010). Finally, two recent studies use a class of Markov chain Monte
Carlo (MCMC) methods known as Metropolis-Hastings (Rigby et al., 2011; Burrows et al., 2013),
implemented in a manner that enforces nonnegativity. Existing atmospheric studies provide lit-
tle guidance on the merits of one approach over another.

The objective of this study is thus to investigate the merits of the above approaches and two
additional MCMC implementations. MCMC algorithms are ubiquitous in Bayesian statistics but
are not commonly applied to atmospheric studies. The remainder of this paper is organized as
follows: Sect. 6.2 examines the statistical assumptions of common inversion methods that are in-

compatible with inequality constraints. Section 6.3 discusses several possible alternatives to miti-
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gate these statistical assumptions, including data transformations, Lagrange multipliers, and two
specific MCMC implementations — a multiple-try Metropolis—Hastings algorithm and a Gibbs
sampler. Finally, Sects. 6.4 and 6.5 discuss the costs and benefits of each approach in the context

of a synthetic case study estimating North American anthropogenic methane emissions.

6.2 Common Bayesian approaches to inverse modeling

This section describes common approaches to inverse modeling and indicates which statistical
assumptions are incompatible with known bounds.

In a typical inverse problem, the unknown quantity to be estimated (s, dimensions m x 1) is
different from the quantity actually observed (z, dimensions 1 x 1), and the two are related to one
another by a function h(s). In the case of trace gas inversions, s are the true, unknown emissions
or fluxes; z are observations of atmospheric concentration; and the function # is often defined by

an atmospheric transport and / or chemistry model:

z ~ h(s) + N(O,R), 6.1)

where A/ (0, R), in this case, represents the combined model, measurement, representation, and
spatial / temporal aggregation errors, collectively termed model-data mismatch. These errors are
most commonly assumed to be random and normally distributed with a mean of zero and an
n x n covariance matrix R.

Any a priori information on the spatial or temporal distribution of s can be incorporated into
a model of the mean, E[s]:

s ~ E[s]+N(0,Q). (6.2)

This model, E[s], rarely matches the unknown s, and the m x m covariance matrix Q describes
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the magnitude and structure of the residuals between s and E|s|. As with the model-data mis-
match, these residuals are also typically assumed to be normally distributed with a mean of zero.

The model of the mean can be formulated in a number of ways, but one common method,
used in this paper, is as follows:

E[s] = X8, (6.3)

where the m x p matrix X includes p different covariates, and the unknown p x 1 drift coefficients
(B) adjust the magnitude of these covariates to best match the observations. The model of the
mean could be uninformative (e.g., X is an m x 1 vector of ones as in Mueller et al., 2008) or could
include any number of covariates, including climatological information or an existing emissions
inventory (e.g., Gourdji et al., 2012; Miller et al., 2013, 2014c). Some inversion approaches assume
that the drift coefficients are known, in which case E[s] becomes an m x 1 vector (e.g., Rodgers,
2000; Enting, 2002; Tarantola, 2005). An inversion with unknown coefficients has typically been
used within the context of a “geostatistical” representation of the inverse problem (used in this
study), while the coefficients are usually assumed in the “synthesis Bayesian” approach, though
both approaches are Bayesian in nature.

Equation (6.1) can be expanded using the formulation of s described in Eq. (6.3):

z ~ HN(XB,Q) + N(0,R), (6.4)

where NV (XB, Q) represents the distribution of s relative to the prior or model of the mean (Xp).
The n x m sensitivity matrix, H, is a linearized form of h. This setup assumes, as in most existing
studies, that the measurement residuals (z — Hs) and flux residuals (s — Xp) follow a multivariate
normal distribution, as will the posterior probabilities of s and B.

The optimal estimate of unknown s can be obtained by minimizing the sum of squared residu-
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als subject to the covariances:

1
Lip = 5 (z- Hs)" R~ (z — Hs)

F3 - XpTQ (s Xp). 65)

If H does not depend on the unknown value of s, then s can typically be estimated by solv-
ing a system of linear equations (refer to Michalak et al. (2004) and Tarantola (2005) for more
in-depth discussion on estimating s and the associated posterior uncertainties). Otherwise, the
algorithm is usually iterative.

If s has known bounds, then Eq. (6.4) must be reformulated in a way that honors the inequal-
ity constraints. Some deterministic methods permanently remove elements of s from the opti-
mization if they violate the bounds (e.g., Lagrange multipliers). In a purely stochastic approach,
the first term in Eq. (6.4) will instead follow some multivariate distribution (f}') that is restricted

to within the lower and upper constraints (I and u, respectively):
z~Hf(sX,Q) + N(0,R). (6.6)

This alteration modifies the prior probability of the fluxes; the fluxes (s) will deviate from the
prior or expected value (E[s]) only to the extent that the fluxes remain within the bounds I and u.
In contrast, the distribution of the model-measurement residuals, N'(0,R), remains the same as
in the case without inequality constraints. In Eq. (6.6), f could be formulated as a multivariate
truncated normal, exponential, or gamma distribution, among many other choices. Most formu-
lations of f}' result in a cost function that does not have a straightforward analytical minimum,
unlike the multivariate normal case in Eq. (6.5). Instead, the unknown quantity (s) must be es-

timated using an algorithm that samples the posterior probability density. Even then, it can be
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difficult to sample this density efficiently. The next section describes example deterministic and

stochastic approaches in greater detail.

6.3 Strategies for enforcing inequality constraints

6.3.1 Data transformations

Data transformations can enforce inequality constraints with relatively easy implementation, but
transformations typically render a linear inverse problem nonlinear and therefore require an it-

erative solution. A number of different data transformations exist, but the power transformation
is a common approach because it is defined at zero (unlike log transformations; e.g., Snodgrass &

Kitanidis, 1997; Wilks, 2011, Chap. 3):
s=a(s/*-1), (6.7)
(

where s are the fluxes in normal space and « can be any scalar value such thats > —a, though
larger values of a cause more extreme transformations. This formulation approaches the natural
logarithm for large values of a.

For the power transform, the Jacobian or sensitivity matrix (H) is not linear in the transformed
space. The algorithm, as a result, becomes iterative and requires updating H at every iteration
until both H and the best estimate in the transform space (5) converge (described in detail by
Snodgrass & Kitanidis (1997) and Fienen et al. (2004), among others). Most transformations
assume a skewed pdf and therefore lead to skewed posterior uncertainty estimates, and such
asymmetry can have a number of implications as discussed in Sect. 6.5. Furthermore, most com-
mon transformations can only enforce a single upper or lower bound that is the same for all ele-

ments of s.
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6.3.2 Lagrange multipliers and the trust region algorithm

The method of Lagrange multipliers is commonly used in deterministic optimization problems
to enforce equality or inequality constraints. The approach has also been adapted to a number
of stochastic inverse problems in hydrology (Barnes & You, 1992; Walvoort & de Gruijter, 2001;
Michalak & Kitanidis, 2004) and more recently in an atmospheric context (Henze et al., 2007;
Kopacz et al., 2009; Gockede et al., 2010). The method of Lagrange multipliers can be applied

to an inversion by modifying the original cost function Lg g:
Ligy=Leg—AT(s —1), (6.8)

where [ in this case is a lower bound on s, where the bound can be spatially and temporally vari-
able, and A are the unknown Lagrange multipliers.

A number of implementations exist, but all methods share many similarities. Any element of
s that would otherwise violate the inequality constraints becomes fixed on one of the bounds.
Most algorithms are iterative and add or remove these elements from the “active” set at each
iteration. The optimization proceeds only on the active set and ignores all other elements that
have been fixed (e.g., Gill et al., 1981). A large difference among algorithms is the way in which
elements are removed or added to the active set.

One result of this setup is that elements in the fixed set are not modeled as continuous random
variables. Estimated emissions in these regions have no associated posterior uncertainty. In other
words, Lagrange multipliers compromise the stochastic nature of the inverse problem in order to
enforce the desired constraints.

Several numerical methods are available for solving constrained optimization problems via
the method of Lagrange multipliers, but many are restricted to small or medium-sized prob-

lems (e.g., s has fewer than 1000 elements). These include the method of Theil and Van de Panne
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(Theil & Panne, 1960; Snyman, 2005, Chap. 3.4) and the active set method (e.g., Gill et al., 1981, or
Antoniou & Lu, 2007, Chap. 13.3).

A number of algorithms can efficiently solve large, bounded optimization problems, including
the trust region method and the bounded, limited-memory Broyden-Fletcher—-Goldfarb—Shanno
approach (L-BFGS-B; e.g., Byrd et al., 1995). This paper implements a trust region algorithm. The
method can efficiently handle large, bounded optimization problems because it adds and/or
subtracts multiple elements from the fixed set at each iteration (e.g., More, 1988; Lin & More,
1999). A trust region algorithm approximates the objective function at each iteration and esti-
mates the range over which this approximation can be trusted (referred to as the trust region).
The algorithm optimizes s within the trust region and compares the approximated improvement
to the actual reduction in the cost function (in this case Eq. 6.5). If the cost function approxima-
tion performs well, the algorithm is allowed to make more aggressive moves at each iteration.

In other words, the algorithm may increase the size of the trust region if the approximation does
well and vice versa. Though it was originally developed for unconstrained problems, Gay (1984)
extended the trust region method to constrained optimization. For additional discussion of gen-
eral trust region algorithms, see Sorensen (1982), Lin & More (1999), Conn et al. (2000, Chap. 1,
Chap. 6), or Yuan (2000).

This paper adopts a general algorithm outlined in Lin & More (1999). The reader is referred
to a review article (Yuan, 2000) for a broad discussion of possible trust region implementations.

Most require the gradient (VL) and Hessian (V2L) of the cost function. For reference, these equa-
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tions are listed below for the geostatistical approach:

1 1
Visp = —EHTR_l(z—Hs) + 5Gs

1 1
V2L, g = 5G + 5HTR—lH (6.9)

To construct these equations, we take the derivative of the original cost function (Eq. 6.5) with
respect to B and set this derivative equal to zero (Kitanidis, 1986). We then rearrange the cost
function to omit the unknown drift coefficients p. The resulting Hessian and gradient above are
written only in terms of the unknown vector s. Rodgers (2000) presents analogous equations for

a prior model setup that has predetermined coefficients (B).

6.3.3 MCMC algorithms applied to bounded inversions

The following sections discuss two possible MCMC implementations for inequality-constrained
problems. In general, MCMC algorithms make it possible to generate realizations of the un-
known quantity from high-dimensional probability density functions. These algorithms make
problems with non-Gaussian distributions and / or complex joint pdfs tractable (e.g., Andrieu
et al., 2003).

MCMC algorithms simulate a Markov chain with an equilibrium distribution that matches
the distributions of the quantities being estimated. The methods rely on the generation of con-
ditional realizations; each realization is a guess of the unknown (e.g., s) that should represent
a random draw from the posterior probability distribution. The algorithms create a new real-
ization based only upon the previous one, and the means of doing so differentiate the various
MCMC methods. Many conditional realizations are typically generated to adequately sample

or represent the equilibrium distribution (Geyer, 2011). The point-wise properties of the equi-
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librium probability density (e.g., mean, median, percentiles, standard deviation) can be used to
represent the statistics of the unknown state, including its uncertainties. A thorough introduc-
tion to MCMC approaches is given by Geyer (2011).

MCMC methods can also be used for the solution of bounded problems. Each individual real-
ization of the unknown quantity is restricted by the inequality constraints (Gelfand et al., 1992),
ensuring that both the posterior best estimate and associated uncertainties will honor known

physical limits.

Metropolis—-Hastings

Metropolis—Hastings algorithms have become widespread in Bayesian statistics (see Chib &
Greenberg, 1995; Bolstad, 2012, for in-depth discussion). The modeler uses an existing, accepted
realization of the unknown quantity (in this case s) to generate a new proposed realization with
a Markov chain whose properties are defined by the modeler. One possible approach might gen-
erate many realizations of s by using slightly modified inputs for Eq. (6.5). Instead of using z in
Eq. (6.5), sample randomly from N (z, R). Instead of using E|s], use random, sequentially corre-
lated samples from N (E[s], Q) (see the Supplement for further discussion).

Each subsequent proposed realization is accepted or discarded based on its likelihood relative
to the previous, accepted realization. Realizations with a relative likelihood greater than one are
always accepted, while those with a relatively likelihood less than one are only sometimes ac-
cepted. A large number of realizations is sequentially generated in this way to sample across the
probability space of the unknown (in this case the posterior probability distribution of s).

The modeler must carefully balance two considerations when proposing new realizations. If
each proposed realization is too close to the previous accepted realization, the algorithm will
sample the probability space very slowly. However, if the proposed realization is too far from the

previous accepted realization, it will likely have a low relative likelihood and be rejected (e.g.,
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Chib & Greenberg, 1995).

A number of studies have implemented the general algorithm with an adaptation for inequal-
ity constraints, both in hydrology (e.g., Michalak & Kitanidis, 2004; Wang & Zabaras, 2006; Zanini
& Kitanidis, 2009) and more recently in the atmospheric sciences (e.g., Rigby et al., 2011; Burrows
et al.,, 2013).

The cited hydrology studies use an implementation suitable for large problems (refer to the
Supplement). For the specific implementation in these studies, each proposed realization is first
constrained to be nonnegative with Lagrange multipliers before being tested for acceptance. This
implementation is a compromise between a purely stochastic approach that would represent
all elements as continuous random variables and the method of Lagrange multipliers that com-
pletely removes some elements from the optimization.

Though ideal for small problems, Metropolis—Hastings algorithms can often become stuck in
local regions of high probability when there are many quantities being estimated (i.e., when m
is large). The acceptance rate can become so small as to make implementation impractical (Liu
et al.,, 2000). This study implements a multiple-try Metropolis-Hastings algorithm (Liu et al.,

2000) suitable for larger-scale inverse problems, described fully in the Supplement.

Gibbs sampler

Unlike the Metropolis-Hastings algorithm, the Gibbs sampler calculates a new realization for

each element of the unknown state sequentially (in this case, each of m elements in s). This method
involves calculating a probability distribution for an individual element of s conditional on the
current realization for all other elements. The algorithm takes a random sample from the element-
wise conditional probability density, and this sample becomes the new guess for the given ele-
ment. Using this method, the Gibbs sampler sequentially calculates a conditional distribution

and random sample for each of m elements in s until an entire new, full conditional realization
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has been formed (see the Supplement). Like the Metropolis—Hastings algorithm, the Gibbs sam-
pler requires generating a large number of conditional realizations, and the statistics of these
realizations can be used to define a best estimate and associated uncertainties. For an in-depth
review of the Gibbs sampler, refer to Casella & George (1992) or Bolstad (2012, Chap. 10).

Several studies in hydrology apply Gibbs sampler methods to constrained inverse problems
(e.g., Michalak & Kitanidis, 2003; Wang & Zabaras, 2005; Fienen et al., 2006; Michalak, 2008).
Michalak (2008) describes a flexible implementation in the context of groundwater problems that
can incorporate any kind of spatial or temporal correlation in the a priori covariance matrix Q,
and this implementation is adapted for the case study here. The implementation uses a multi-
dimensional truncated normal as the prior pdf (Michalak, 2008). However, because the Gibbs
sampler uses element-wise pdfs, it avoids the mathematical challenge of explicitly maximizing
a high-dimensional truncated pdf. The approach thereby enforces the inequality constraints in a
computationally tractable manner.

The implementation in this study differs from Michalak (2008) in one important way. Some
regions of the United States and Canada have zero anthropogenic methane emissions, and we
alter the shape of the pdfs to allow a high probability at zero. The implementation here draws
a random sample from a Gaussian conditional distribution for sequential elements in s. If the
sample is positive, it becomes the new realization for that element of s. If the sample is negative,
we use zero as the realization for that element. The approach is equivalent to modeling the prior,
and subsequently the posterior, distributions as truncated Gaussian with an added Dirac delta
(a function that is zero at every point except zero). This modification relative to Michalak (2008)

results in a peak in the posterior densities at zero.
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6.4 Methane case study setup

A synthetic case study of estimating US anthropogenic methane emissions illustrates the com-
parative drawbacks and benefits of the approaches described above: the power transformation,
Lagrange multipliers, and two MCMC implementations, with an unconstrained inversion for
comparison. The synthetic study setup uses an existing methane emissions inventory and a
model of atmospheric transport to create an estimation problem with known true emissions. The
prescribed methane emissions are always nonnegative, so the constraints on this inversion are
simple; the estimated emissions must also be nonnegative (I = 0). The remainder of this section

describes the case study setup in detail.

6.4.1 Model and synthetic data setup

This study employs a regional-scale, particle-following model known as STILT, the Stochastic
Time-Inverted Lagrangian Transport model (Lin et al., 2003), to quantify the sensitivity of atmo-
spheric observations to surface sources, and thereby to estimate the sensitivity matrix H. STILT
simulations are driven by Weather Research and Forecasting (WRF) wind fields, version 2.2 (Ska-
marock et al., 2005). In other words, the combination of WRF and STILT serves as the forward
model for the methane case study. Nehrkorn et al. (2010) provide a detailed description of the
WREF fields used here.

We use WRF-STILT to generate synthetic methane mixing ratios in the same locations as air-
craft and tall tower observation sites in the United States (4600 total observations). The tower
sites are those in the NOAA Earth Systems Research Laboratory and DOE monitoring network
and are displayed in Fig. 6.1. Aircraft data include methane measurements from the NOAA
Earth Systems Research Laboratory aircraft program at a variety of locations over North Amer-

ica, DOE flights over the US southern Great Plains (Biraud et al., 2013), and observations from
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Figure 6.1: The synthetic measurements and synthetic emissions used in this study. Blue numbers (left)
indicate the observation count at each tower site. The red box (right) displays the region represented in
Table 6.2.

the START08 measurement campaign (Pan et al., 2010). This study includes only aircraft mea-
surements within 2500 m of the ground — measurements that are consistently sensitive to surface
fluxes (see Fig. 6.1, Miller et al., 2013).

The study generates synthetic methane measurements using the EDGAR v3.2 FT2000 an-
thropogenic inventory (Olivier & Peters, 2005). Newer EDGAR inventories are available (e.g.,
EDGAR v4.2), but top-down studies suggest that version 3.2 best captures the magnitude of an-
thropogenic sources over the United States (Kort et al., 2008; Miller et al., 2013, see Fig. 6.1).

We add noise to each synthetic measurement, randomly sampled from the model-data mis-
match covariance matrix (R with diagonal elements olzz). The companion study Miller et al. (2013)
statistically infers this information from in situ methane measurements using restricted maxi-
mum likelihood estimation (REML) (e.g., Kitanidis & Lane, 1985; Michalak et al., 2004). Table 6.1

summarizes the model-data mismatch values inferred for the towers and aircraft.
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Table 6.1: Covariance matrix parameters. (Note: Each tower has a different estimated og. Refer to Miller
et al. (2013). Furthermore, in the case of the power transform, we set & = 6. This value brings the posterior
emissions estimate closest to being normally distributed in the transformed space.)

Parameter Value
OR,tower (Ppb) 13.1-68.9
OR,aircraft 19.8

Untransformed space
oo (umolm~2s71)  0.017

[ (km) 101
Transformed space (@ = 6)
oo 0.81
l 261

Table 6.2: Eastern US/Canada anthropogenic budgets and 95 % confidence intervals (Tg C month~!) for
the true synthetic emissions and inversion estimates.

Type Budget % of true emiss. encapsulated
in the given confidence interval
68.2 % 95 %

True emissions 1.61

Unconstrained inversion 1.60+0.13 90 97

Transform 1.59 £0.20 64 87

Lagrange multipliers 1.60

Metropolis—Hastings 1.60 £ 0.08 86 97

Gibbs sampler 1.58£0.08 86 96

6.4.2 The inversion setup

The inversion covers much of North America (25-55° N latitude, 145-5° W longitude) on a 1°x1°
spatial resolution over the months May—September 2008. Anthropogenic methane sources do not
change markedly from one season to another (Miller et al., 2013). Therefore, the synthetic data
study here estimates a single set of emissions over the entire five-month period.

All inversions presented here utilize an uninformative prior (e.g., Michalak et al., 2004; Mueller

et al.,, 2008). In other words, the inversion prior is a single unknown constant across the entire
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geographic inversion domain. This method makes as few a priori assumptions as possible and
relies on the atmospheric data to the fullest extent to infer information about the emissions. This
framework is particularly well suited to a synthetic data study; any a priori inventory would be
arbitrary since the true emissions are already known.

Despite the lack of information in the prior itself, the inversion incorporates important struc-
tural information about the fluxes in the a priori covariance matrix (Q). Specifically, the diago-
nal elements of Q describe the total variability of the fluxes (02Q — the variance over long spatial
scales), and the off-diagonal elements describe the degree of spatial correlation in the posterior
flux field, assuming an exponential covariance function. The spatial characteristics of the known
emissions field are listed in Table 6.1 and are used to construct Q (cr?2 and ], the decorrelation
length parameter). The parameters for the untransformed space are used in the unconstrained,

Metropolis—-Hastings, and Gibbs sampler inversions.

6.5 Results and discussion

The inversion implementations discussed in this study produce variable results. All methods

place large methane emissions in Kentucky, West Virginia, and along the eastern seaboard, sim-
ilar to the true synthetic fluxes (see Fig. 6.2), but the methods differ in many other regards. The
remainder of this section highlights these differences to illustrate the relative merits of each ap-

proach.

6.5.1 Unconstrained inversion

The unconstrained case causes several undesirable side effects, including but not limited to neg-
ative emissions estimates (Fig. 6.2). It may appear counterintuitive that the emissions estimate

(8) could have negative components when the observations (z) and model transport (H) contain
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only positive elements. However, these negative emissions are not necessarily caused by any
violation of the statistical assumptions in the inversion. Rather, the estimate (5) may contain neg-
ative elements due to the effect of model-data mismatch errors. When these errors are present,
the gradients in the observations can be consistent with adjacent positive and negative sources.
In the methane case study, we synthetically generate model-data mismatch errors, so these er-
rors are guaranteed to obey all assumptions of the statistical model. Negative emissions, in this
case, could not be caused by biases in wind fields, chemistry, or by a biased prior. In this study,
the true winds are known, chemistry is absent, and the geostatistical inverse model does not as-
sume any prior value for the emissions.

Aside from unrealistic negative emissions, the uncertainties are also too large. Conditional re-
alizations and confidence intervals based on multi-Gaussian probabilities extend well beyond
the known bounds on the problem (i.e., are not strictly nonnegative), even in regions where the
best estimate itself falls within these bounds (Fig. 6.3). Figure 6.4 visualizes this problem in terms
of the marginal probability distributions — the probability of an individual element in the emis-
sions field integrating over all possible values of the remaining elements. Even emissions esti-
mated over source regions (Fig. 6.4b) include negative values in the 95% confidence interval.

Additionally, the unconstrained confidence intervals and conditional realizations extend too
high for reasons noted in Sect. 6.1. Figure 6.5 shows sample conditional realizations from each
method. Emissions in the unconstrained realization extend both lower and higher than the real-

izations estimated by either MCMC algorithm.

6.5.2 Data transformations

Transformations can be straightforward to implement, but this class of methods skews the prob-
ability distributions in the inversion: three of the most important implications are discussed

here. First, the posterior covariances (e.g., prior and posterior uncertainties) cannot be directly
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transformed back to normal space; instead, upper and lower estimation bounds (i.e., percentiles)
must be back-transformed to produce posterior confidence intervals. In other words, the covari-
ances become central-value-dependent and are otherwise difficult to physically interpret in back-
transformed units. Second, because the covariances are central-value-dependent, it can be diffi-
cult to estimate the a priori covariance matrix (Q) in the transformed space, particularly for two
of the most common estimation methods. One could use existing knowledge of the emissions

to estimate the covariances, but this approach becomes difficult when the covariance matrix has
little physical meaning in the transformed space. The covariance matrices can also be inferred
from the data and model itself using statistical approaches such as REML. The transformation
necessitates iterating between covariance parameter estimation and flux estimation until both
converge (Snodgrass & Kitanidis, 1997). The nonlinearities created by the transformation often
hinder convergence.

Third, the skewness implied by the power transformation is, in many cases, not representative
of actual uncertainties in the emissions best estimate. The uncertainties can become too large in
regions of high emissions and too small in regions of low emissions (Fig. 6.2; e.g., Snodgrass &
Kitanidis, 1997; Fienen et al., 2004; Muller & Stavrakou, 2005). For example, conditional realiza-
tions follow the lower bounds in the methane case study but produce estimates of the sources
that are too large in some high-emissions areas. As a result, the back-transformed conditional
realizations have an average eastern US budget of 2.1 + 0.2 Tg C month~!. The mean of these re-
alizations is much higher than the emissions best estimate for the transform inversion (Table 6.2).
In this case, the best estimate is computed by minimizing the inversion cost function directly. In
contrast, the mean of the conditional realizations is identical to the emissions best estimate for
all other methods discussed in this paper. In addition, the average uncertainties in Table 6.2 are
larger than any other method, yet these uncertainties capture a lower percentage of the synthetic

fluxes at grid scale than other methods. These pitfalls illustrate difficulties in interpreting uncer-
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tainties or realizations in the power transform case. Snodgrass & Kitanidis (1997), Fienen et al.
(2004) and Muller & Stavrakou (2005) provide further discussion on several of the above chal-

lenges associated with data transformations.

6.5.3 Lagrange multipliers

The emissions estimated via Lagrange multipliers reproduce the magnitude and distribution of
the true sources. This method is not truly stochastic, however, and removes many elements from
the optimization entirely (e.g., emissions over most of Manitoba, Ontario, and Quebec, Canada,
in Fig. 6.2). As such, there is no way to calculate either uncertainty bounds or conditional real-
izations using this approach. The uncertainties assigned to the posterior emissions are typically
borrowed from the unconstrained case, though the uncertainties could be borrowed from any
other method. Hence, estimation via Lagrange multipliers resolves the problem of unrealistic
emissions, but it does not address the challenge of estimating bounded posterior uncertainties or

confidence intervals.

6.54 MCMC implementations

The MCMC implementations discussed here provide an appealing option when robust uncer-
tainty bounds are a priority in the analysis. Both of the explored implementations ensure that
the best estimate (Fig. 6.2), conditional realizations (Fig. 6.5), and confidence intervals respect the
known bounds.

Both MCMC implementations produce much narrower uncertainty bounds relative to the
other methods (Fig. 6.2, Table 6.2). As discussed in the introduction, the reason for this is twofold.
First, the confidence intervals must be smaller because they cannot include values outside the in-

equality constraints. Second, if the lower range of the confidence intervals is limited, then the
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maximum emissions values in the interval will also be less extreme (and vice versa; see Sect. 6.1).
The uncertainties are smaller, and yet 96-97 % of the synthetic fluxes still fall within the inver-
sion’s 95 % confidence interval (Table 6.2). For these reasons, the smaller confidence intervals
estimated by the MCMC implementations are most realistic.

The estimated emissions and marginal distributions look very similar between the two MCMC
implementations, but the methods show several subtle differences. Unlike the Gibbs sampler,
the implementation of the Metropolis—Hastings algorithm here uses Lagrange multipliers and
therefore does not explicitly model every element of s in every realization as a continuous ran-
dom variable. As a result, this Metropolis—Hastings method will always produce a high prob-
ability at the inequality constraints (e.g., Fig. 6.4). For smaller problems, in contrast, it may be
feasible to use any shape of prior pdf that is defined only within the inequality constraints. That
setup would model every element of s as a continuous random variable, but the approach would
likely become computationally intractable for larger problems (see the supplement for further
discussion). Instead, the Metropolis-Hastings implementation used here is an extension of La-
grange multipliers to circumstances that require bounded confidence intervals. The Gibbs sam-
pler implementation produces a similar peak in the pdf at zero due to the Dirac delta. In general,
however, the Gibbs sampler allows more flexibility in setting the shape of the marginal distribu-
tions near the bounds.

Appropriate distributional assumptions are important for any type of inversion, and the in-
version with inequality constraints is no different. The Gibbs sampler in this case study models
the marginal distributions as a truncated Gaussian with a Dirac delta function (see Sect. 6.3.3). If
the fluxes or emissions are unlikely to be zero, an implementation without the Dirac delta would
be more suitable.

Furthermore, the choice of a truncated normal distribution may not always be appropriate. If

the total budget is poorly constrained by the data, this distributional choice could increase es-
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timated emissions in remote regions far from measurement sites. A Gaussian pdf that has been
truncated at zero will have a higher mean than the equivalent, full Gaussian distribution, and
this effect can shift the posterior mean in poorly constrained problems. One solution could be

to fix the drift coefficients (B) at predetermined values, but these coefficients are rarely known in
practice. In contrast, if measurement sites are sensitive to emissions across the entire geographic
domain (as indicated by H), then either distributional assumption will produce the same trace
gas budget.

The MCMC implementations produce the most realistic best estimate, conditional realizations,
and uncertainty bounds, but one drawback can be computational cost. The generation of j condi-
tional realizations using the Gibbs sampler requires a for loop with jm iterations, and j is usually
1000 or greater to adequately sample the posterior probability space. The computational time
of the multiple-try Metropolis—Hastings depends on the convergence rate of the Lagrange mul-
tiplier algorithm and on the number of trial realizations (denoted k; see the Supplement) com-
puted in each step of the multiple-try implementation. The often large ratio of trial to accepted
realizations means that the multiple-try Metropolis—Hastings may be less efficient than the Gibbs
implementation. This comparison may seem counterintuitive because Metropolis—Hastings does
not require the posterior pdf to be sampled one element at a time, as is the case for the Gibbs
sampler.

In general, the computational cost of MCMC algorithms increases both with the number of
unknown fluxes (m) and the number of realizations (j) required to sample the posterior probabil-
ity space. Furthermore, the recommended number of realizations changes depending on the size
of the problem and the degree of correlation among successive iterations; Gelman (2004) pro-
vides a number of guidelines for choosing this number. One approach requires initiating mul-
tiple independent Markov chains. The MCMC algorithm reaches convergence when each indi-

vidual chain has a similar distribution to the combination of all chains. Refer to Gelman (2004,
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Chap. 11) for more detail. Parallelization can also alleviate some time expense for MCMC algo-
rithms.

In summary, the Gibbs and Metropolis—Hastings implementations produce similar results,
but the Gibbs sampler can afford two advantages: greater flexibility in determining the shape of
the marginal distributions at the bounds and reduced computational time for the case examined

here.

6.6 Conclusions

For inverse problems with parameters that have known physical limits, an unconstrained inver-
sion presents difficulties that go beyond just an unrealistic estimate, and the common remedy
of using data transformations can have many undesirable side effects. This study uses anthro-
pogenic methane emissions as a lens to evaluate this approach, as well as several less common
alternative approaches.

Inverse problems can be constructed to honor known bounds without compromising the in-
tegrity of the estimate. Lagrange multipliers are a viable approach for large problems in which
computational time is paramount. However, this method does not provide an explicit means for
calculating uncertainty bounds. Uncertainties are usually borrowed from the unconstrained case
instead, and these are generally unrealistically large.

Markov chain Monte Carlo (MCMC) methods show the most promise but are rarely applied
in the existing atmospheric literature. Both MCMC implementations here produce similar re-
sults for the methane case study, but the Gibbs sampler offers better computational efficiency
and more flexibility in determining the shape of posterior probability at the bounds. In general,
MCMC algorithms can be applied to inverse problems with known bounds to produce the most

realistic best estimates, confidence intervals, and conditional realizations of any of the aforemen-
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tioned approaches.
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Figure 6.2: The posterior best estimate of the emissions and uncertainties associated with each method-
ological approach. The method of Lagrange multipliers does not support a direct means of estimating
uncertainties.
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Figure 6.3: The number of posterior uncertainty standard deviations before the methane emissions be-
come negative in the unconstrained estimate.
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Figure 6.4: The marginal posterior density for the estimate of methane emissions at three individual lo-
cations. Case (a) is an estimate of emissions north of Thunder Bay, Ontario, Canada; case (b) is over In-
dianapolis, Indiana; and case (c) is over eastern Kentucky. The unconstrained case is plotted as a normal
distribution, and the other plotted probability densities are produced by applying a kernel smoother to
the histogram of realizations. Note that this figure does not include the Lagrange multipliers case because
this deterministic approach produces only a best estimate with no associated marginal densities.
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Figure 6.5: Example conditional realizations from each different optimization approach.
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7

Biases in atmospheric CO, estimates from correlated meteo-

rology modeling errors

This chapter originally appeared as a research article in Atmospheric Chemistry and Physics. For the orig-

inal article, refer to Miller et al. (2015).

Estimates of CO; fluxes that are based on atmospheric measurements rely upon a meteorology
model to simulate atmospheric transport. These models provide a quantitative link between the
surface fluxes and CO, measurements taken downwind. Errors in the meteorology can therefore
cause errors in the estimated CO, fluxes. Meteorology errors that correlate or covary across time
and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO,
that are easily confused with the CO, signal from surface fluxes, and they are difficult to charac-
terize. In this paper, we leverage an ensemble of global meteorology model outputs combined
with a data assimilation system to estimate these biases in modeled atmospheric CO,. In one
case study, we estimate the magnitude of month-long CO, biases relative to CO, boundary layer

enhancements and quantify how that answer changes if we either include or remove error cor-
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relations or covariances. In a second case study, we investigate which meteorological conditions
are associated with these CO, biases.

In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO, con-
centrations, depending upon location (95 % confidence interval). These uncertainties correspond
to 13-150 % of the mean afternoon CO; boundary layer enhancement at individual observation
sites. When we remove error covariances, however, this range drops to 2-22 %. Top-down stud-
ies that ignore these covariances could therefore underestimate the uncertainties and / or propa-
gate transport errors into the flux estimate.

In the second case study, we find that these month-long errors in atmospheric transport are
anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial re-
gions. In marine environments, by contrast, these errors are more strongly associated with weak
zonal winds. Many errors, however, are not correlated with a single meteorological parameter,
suggesting that a single meteorological proxy is not sufficient to characterize uncertainties in
atmospheric CO,. Together, these two case studies provide information to improve the setup
of future top-down inverse modeling studies, preventing unforeseen biases in estimated CO,

fluxes.

7.1 Introduction

Scientists increasingly use atmospheric CO, observations to estimate CO; fluxes at Earth’s sur-
face (e.g., Gurney et al., 2002; Michalak et al., 2004; Peters et al., 2007; Gourdji et al., 2012). This
“top-down” approach contrasts with “bottom-up” studies that rely primarily on expert knowl-
edge of biological processes (e.g., Huntzinger et al., 2012; Raczka et al., 2013). In order to esti-
mate the fluxes, top-down studies typically require a meteorology model to link fluxes at the

surface with measurements taken downwind. Using this link, one can estimate the fluxes even if
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the atmospheric measurements do not themselves directly measure the fluxes.

However, both the accuracy and effective resolution of the flux estimate hinge upon the ac-
curacy of the meteorological model. Errors in the meteorological model may (or may not) bias
estimated CO, fluxes depending upon the error characteristics and the space/timescales of inter-
est.

More specifically, the effect of CO, transport errors on the estimated fluxes depends upon
two important factors. First, the flux estimate becomes more uncertain as the CO, transport
error variance (or standard deviation) increases. Top-down studies that use Bayesian statistics
will explicitly account for these variances when estimating fluxes (e.g., Enting, 2002; Tarantola,
2005); before estimating the fluxes, the modeler first estimates the total variance due to an array
of model or data errors — due to imperfect atmospheric transport or imperfect measurements,
among many other sources of error (e.g., Gerbig et al., 2003; Michalak et al., 2005; Ciais et al.,
2011).

Second, the flux estimate becomes more uncertain as the temporal and / or spatial error co-
variances increase. As the covariances increase, each CO, measurement effectively provides less
and less independent information to constrain the surface fluxes. Furthermore, these temporally
and/or spatially correlated errors can bias the flux estimate over a region or over the entire geo-
graphic area of interest (e.g., Stephens et al., 2007).

Quantification of this complex cause-and-effect between meteorological errors and errors in
estimated CO, fluxes represents an ongoing research challenge, and a number of existing stud-
ies have characterized different aspects of these uncertainties. For example, a series of stud-
ies known as TransCom (Atmospheric Tracer Transport Model Intercomparison) represents
one of the first coordinated projects on CO, transport uncertainties (Gurney et al., 2002; Baker
et al.,, 2006). These early studies used 13 different global atmospheric models and compared dif-

ferences in top-down CO, budgets due to atmospheric model differences. Subsequent to the
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TransCom project, a number of studies have focused on the effects of changing vertical mix-

ing and/or planetary boundary layer height (PBLH) (Gerbig et al., 2008; Williams et al., 2011;
Kretschmer et al., 2012, 2014; Parazoo et al., 2012; Pino et al., 2012). In general, those papers
found that uncertainties in PBLH can lead to biases of ~3 ppm in modeled daytime CO,. An-
other paper examined the effect of uncertain horizontal winds (Lin & Gerbig, 2005). The authors
applied a particle-trajectory model at a measurement site in Wisconsin and found that uncertain-
ties in the horizontal winds contributed ~6 ppm (standard deviation) to the overall CO, trans-
port uncertainty. In summary, a number of previous studies have either perturbed individual
meteorological parameters or, in the case of TransCom, sampled transport uncertainties using 13
preselected atmospheric models.

The present study is particularly concerned with temporal and /or spatial error covariances in
atmospheric CO, transport. To what extent do CO; transport errors covary in space and time?
How large are these covariances relative to the magnitude of the surface CO, fluxes, and which
meteorological factors drive large error covariances? These covariances are often difficult to
characterize (e.g., Lin & Gerbig, 2005; Lauvaux et al., 2009) and are omitted from most existing
top-down efforts.

We explore several facets of these questions using a global meteorology model ensemble and
a meteorology data assimilation system — the Community Atmosphere Model (CAM) and a Lo-
cal Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007). Efforts by Liu et al. (2011) and
Liu et al. (2012) extended this meteorological framework to model uncertainties in atmospheric
COs.

This framework systematically estimates meteorology and CO, transport uncertainties to an
extent not previously possible; CAM-LETKEF explicitly represents the CO, transport uncertainties
that remain after assimilating several hundred thousand meteorology observations at each 6 h

model time step. To accomplish this task, CAM-LETKF uses an ensemble of weather forecasts
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Figure 7.1: Average CarbonTracker CO; fluxes (version 20110i) for (a) February and (b) July 2009. The
fluxes include biosphere, ocean, fossil fuel, and biomass burning fluxes (http://www.esrl.noaa.gov/
gmd/ccgg/carbontracker/CT2011_o1).

and optimizes the ensemble to match available meteorological observations. Furthermore, CAM-
LETKEF adjusts the variance of the weather ensemble at each time step to match the modeling
uncertainties implied by the meteorological observations.

Using this toolkit, we construct several case studies to understand both the possible magni-
tude and drivers of CO, transport error covariances — errors that persist over many time steps
and/or across large regions. The next section describes CAM-LETKF and these case studies in

greater detail.

7.2 Methods

7.2.1 The meteorology and CO, model

The first component of CAM-LETKEF is the meteorological model. We simulate global meteo-
rology using CAM and the Community Land Model (CLM, version 3.5) run in weather forecast

mode (not climate mode) (Collins et al., 2006; Oleson et al., 2008; Chen et al., 2010). Model sim-
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ulations in this study have a spatial resolution of 2.5° longitude by 1.9° latitude with 26 vertical
model levels. In most regions, there are three vertical model levels within the lowest kilometer
of the atmosphere. These model levels are centered at 929.6, 970.6, and 992.6 hPa over regions
where the land / water surface is at sea level.

We save the global model output at 6 h time increments. Furthermore, we run the model for
two time periods: January—February 2009 and May-July 2009. The first month of each run serves
as an initial spin-up for the model-data assimilation system. The next section describes this as-

similation in greater detail.

7.2.2 The meteorological model-data assimilation framework

The second component of CAM-LETKEF is the data assimilation and model optimization frame-
work. This framework serves two purposes. First, the LETKF optimizes modeled meteorology
(CAM-CLM) to match available observations. Second, the LETKF uses an ensemble of model

forecasts to represent model uncertainties that remain after data assimilation (Hunt et al., 2004,

2007). We define each ensemble member and the mean of the entire ensemble as follows:

xi=X+X; wherei =1.. k, (7.1)

where x; (m x 1) is a single model ensemble member, X (m x 1) is the mean of the model ensemble,
and X; (m x k) refers to the ith column of the matrix that defines the ensemble spread. In this
paper, the variable m refers to the total number of model parameters — the model estimate for

a variety of meteorological variables, concatenated across the globe and across all 6-hourly time
steps in a given model run. Furthermore, we use k = 64 total ensemble members in this setup, as
was done in Liu et al. (2011) and Liu et al. (2012).

Using this ensemble, CAM-LETKEF steps through time in sequential 6 h intervals. First, the
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model ensemble at time ¢ is optimized to match meteorological data (Hunt et al., 2007). To this
end, we assimilate the same meteorological observations used in the National Centers for Envi-
ronmental Prediction — Department of Energy reanalysis 2 (Kanamitsu et al., 2002): temperature
(in situ and satellite), zonal wind (in situ and satellite), meridional wind (in situ and satellite),
surface pressure (in situ), and specific humidity (in situ). At each 6 h model time step, we as-
similate between ~180 000 and 330 000 observations globally. At that juncture, the ensemble
mean associated with time ¢, X(t), represents the model best guess and the ensemble members,
X(t) + X(t), collectively represent the uncertainties in the modeled meteorology (i.e., posterior
variances and covariances). Second, we run 6 h CAM-CLM forecasts using these realizations as
initial conditions — a total of 64 model forecasts. The 6 h cycle of data assimilation and model
forecast then begins again.

This model ensemble, by design, is guaranteed to reflect actual uncertainties in modeled me-
teorology; at each 6 h model time step, we adjust the ensemble variance such that this variance
matches against the model-data residuals (Li et al., 2009; Miyoshi, 2011). The Supplement de-
scribes this procedure, known as adaptive covariance inflation.

The model ensemble also accounts for both spatial and temporal covariances in modeled me-
teorological uncertainties; meteorological errors within one ensemble member can easily persist
over many time steps. This continuity occurs because the optimized ensemble members from the
one time step become the initial conditions for the weather forecast at the next time step. For ex-
ample, if the PBL height in one ensemble member is lower than the ensemble average at a given
time step, it will likely be lower than average at the next time step. Similarly, if the PBL height in
one ensemble member is lower than average over one grid box, it will likely also be lower than
the average over an adjacent grid box.

Certain meteorological uncertainties, however, may not always be captured by the assimila-

tion system, particularly uncertainties that do not manifest in the model-data residuals. For ex-
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ample, CAM-LETKF will not fully characterize uncertainties due to different PBL schemes (e.g.,
Yonsei versus Mellor—Yamada-Janjic) or due to other structural model differences. Furthermore,
LETKF cannot spatially resolve uncertainties that occur at sub-grid scale (e.g., turbulent eddies
or numerical diffusion). For further technical detail on the LETKF and adaptive covariance infla-
tion, refer to the Supplement, Hunt et al. (2004, 2007), Li et al. (2009), Liu et al. (2011), or Miyoshi
(2011).

7.2.3 CO, transport error variances and covariances

The CAM-LETKF system described above estimates not only meteorological uncertainties but
also uncertainties in CO, transport. In this study, CO, is a passive tracer that is not part of the
data assimilation, so any uncertainties in CO, concentrations are solely due to uncertainties in
atmospheric transport.

We drive all model simulations with a published CO; flux estimate from CarbonTracker (CT),
version CT2011o0i (Fig. 7.1; Peters et al., 2007, http://carbontracker.noaa.gov). CT is a com-
monly used global CO, flux estimate created by the US National Oceanic and Atmospheric Ad-
ministration (NOAA). NOAA scientists optimize CT fluxes to match atmospheric CO, data,
so the flux estimate is consistent with actual observations (Peters et al., 2007). The original CT
fluxes have a temporal resolution of 3 h. We average these fluxes to a 6 h resolution for all of the
CAM simulations in this study.

We subsequently estimate 6-hourly CO, transport uncertainties using this setup. These uncer-
tainties are defined as the difference between the top and bottom of the 95 % confidence interval,
computed from the 64 model realizations (e.g., Fig. 7.2). To make this estimate, we calculate the
2.5th and 97.5th percentiles of each row in X|c(,;, where the subscript [CO,] refers to the atmo-
spheric CO, concentrations estimated by the ensemble. The remainder of the methods section

applies this CO, and meteorology modeling framework to two case studies.
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724 Case study 1: the magnitude of temporally and spatially covarying atmospheric trans-

port errors relative to a CO, flux estimate

This case study explores the importance of persistent, covarying transport errors and the magni-
tude of those errors relative to the CO, fluxes. In particular, we estimate uncertainties in monthly
mean, afternoon, modeled CO, concentrations at a number of in situ atmospheric observation
sites. In one case, we include temporal and/or spatial covariances in the atmospheric transport
errors, and in another case we remove these covariances. We then compare these uncertainties
against the modeled afternoon CO; boundary layer enhancement to understand the magnitude
of these errors relative to the surface fluxes.

The uncertainty in monthly—averaged CO, concentrations serves as a measure of how trans-
port errors correlate or covary across time. Uncorrelated transport errors will average out, to
a large degree, over many model time steps, but temporal error covariances prevent the errors
from averaging down over time. Furthermore, CO, budgets are often reported in month-long
increments (e.g., Gourdji et al., 2012, and CT), so this time window is a relevant benchmark with
respect to inverse modeling studies.

We calculate uncertainties in the monthly-averaged model output (including error covari-
ances) via several steps. First, we select out the rows of X(coy] that correspond to afternoon ob-
servations (13:00-19:00 LT) for a given month at an in situ CO, observation site. Second, we
calculate the mean of each column in Xcp,;. Each column corresponds to a different ensemble
member. The resulting vector of length 64 is the difference between each ensemble member and
the best estimate (X), averaged at the monthly scale. Lastly, we use this vector to compute a con-
fidence interval in monthly-averaged, modeled CO, (the 97.5th minus 2.5th percentiles).

We subsequently remove covariances in the CO, transport errors and recalculate uncertainties

in the monthly-averaged CO, concentrations. As described in Sect. 7.2.2, errors in one ensemble
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member can persist over many steps and can persist across a large geographic region. However,
we can remove these error covariances by randomly reshuffling the elements of each individual
row in X(cp,]. The variance in modeled concentrations in any row or at any given time step will
remain the same. However, each column will no longer represent a single ensemble member.
Rather, each column will represent a random assortment of different ensemble members, and
the errors in each column will no longer covary from one time step to another or one geographic
location to another.

We conduct this analysis at a representative selection of observation sites in North America,
Asia, and Europe. This setup indicates how errors covary with time at the monthly scale. In
addition, we also conduct the analysis using multiple observation sites; we estimate monthly-
averaged uncertainties at the eco-region scale and include all observation sites that lie within the
given eco-region. This latter approach indicates how errors covary spatially across multiple sites
at the regional scale.

These monthly-averaged uncertainties can then be compared against the afternoon, modeled
CO; increment from regional surface fluxes. To estimate this increment, we subtract modeled
free troposphere, “clean air” concentrations at 600 hPa from concentrations modeled at the sur-
face using CT fluxes. The concentrations at 600 hPa are not necessarily a perfect measure of clean
air concentrations. Rather, this approach is an approximation similar to that used by inverse
modeling studies in the literature (e.g., Gerbig et al., 2003; Gourdji et al., 2012).

In summary, case study one explores the magnitude of persistent atmospheric CO, transport
errors or error covariances relative to the afternoon CO; signal from surface fluxes. The next
case study, in contrast, explores the meteorological conditions under which these persistent CO,

transport errors may be more likely to occur.

141



7.2.5 Case study 2: which meteorological factors may be associated with month-long trans-

port biases?

We create a synthetic experiment to explore the meteorological conditions under which month-
long model biases in atmospheric transport may occur. The spatial patterns in the CO, trans-
port uncertainties are heavily influenced by spatial patterns in the CO; fluxes (Fig. 7.2). In other
words, regions with large fluxes or large diurnal flux variability also show higher CO, trans-
port uncertainties. As a result, it is difficult to disentangle the effect of different meteorological
parameters on CO, transport uncertainties. Instead, we create a synthetic tracer with constant
global emissions in both space and time. This experiment serves as a lens to explore the possible
effects of different meteorological parameters independent of the spatiotemporal variability in
CO, fluxes.

To this end, we initialize CAM-LETKF runs with zero atmospheric concentration of this syn-
thetic tracer and then run CAM-LETKEF forward for 1 month using constant global emissions
(e.g., for both February and July 2009). Any uncertainties in the atmospheric distribution of this
tracer are solely due to meteorological parameters, not due to the spatial distribution of the un-
derlying fluxes.

Next, we calculate the coefficient of variation (CV) associated with the monthly-averaged sur-
face concentrations. The CV is an inverted signal-to-noise ratio; it measures the uncertainty in
modeled surface concentrations relative to the average surface concentration (%). For example,
an uncertainty of 1 ppm in modeled concentrations is most problematic if the signal from sur-
face fluxes is weak, and a 1 ppm uncertainty is less problematic if the signal from surface sources
and/or sinks is strong.

For this setup, the CV equals the standard deviation in the monthly-averaged surface con-

centrations divided by the rnonthly surface concentration averaged across all 64 realizations.
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We then plot the tracer CV against monthly-averaged meteorological parameters and their as-
sociated uncertainties from CAM-LETKEF. These relationships give insight into the meteorologi-
cal conditions or meteorological uncertainties that are associated with month-long biases in the

modeled synthetic tracer.

7.3 Results and discussion

7.3.1 Uncertainties in the 6-hourly modeled CO, concentrations

Before examining the two case studies in detail, we first provide context on the CO; transport
uncertainties estimated with CT fluxes and CAM-LETKEF. Figure 7.2a and b visually summa-
rize the average 6-hourly CO, transport uncertainties in the model surface layer — the differ-
ence between the top and bottom of the 95 % confidence intervals. These figures show how CO,
transport uncertainties vary across the globe — from 0.6 to 26 ppm, depending on location. Fur-
thermore, the transport uncertainties in Fig. 7.2a and b show several distinctive features. The
largest uncertainties are localized to regions where either the magnitude or the diurnal cycle of
the CT fluxes is largest (e.g., the US Eastern Seaboard and southern Siberia during summertime,
the Amazon, the Congo, and eastern China). CO, transport uncertainties in the eastern US and
eastern Asia bleed, to a smaller degree, over the adjacent ocean where surface fluxes are small.
Figure 7.3 places these transport uncertainties in context of CO, data measured at two obser-
vation sites in the United States. These time series plots validate the model’s capacity to simulate
daily variations in CO, concentrations. Furthermore, the comparison illustrates the magnitude
of the CO, transport uncertainties relative to the diurnal cycle in CO, concentrations. For exam-
ple, the uncertainties at AMT in July are ~ 30 % of the diurnal range in the CO, measurements.
Overall, the model ensemble depicted in these plots usually encapsulates the hourly-averaged

measurements. CT fluxes are estimated using these CO, observations and the TM5 transport
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model (Tracer Model, version 5) (Peters et al., 2007), so one might expect the CAM model to fit
the CO, observations relatively well. In the instances when the model ensemble does not encap-
sulate the hourly-averaged CO, measurements, one of the many other non-transport error types
could be to blame; the ensemble spread only encompasses transport errors and does not include
measurement errors, errors due to finite-model resolution, or errors in the fluxes. Furthermore,
these instances could be due to structural differences between CAM and TMS5, including differ-
ences in model resolution. The Supplement provides more example CO, model-data compar-

isons, meteorology model validation, and data assimilation diagnostics.

7.3.2 CO, transport uncertainties at longer timescales

The uncertainty in monthly-averaged CO, concentrations provides one measure of how trans-
port errors persist over time, as discussed in Sect. 7.2.4. Figure 7.2c and d display uncertainties
in the month-long average surface concentrations for February and July 2009. In contrast to the
6-hourly uncertainties, these uncertainties are far more spatially distributed. This result implies
that CO, transport errors covary over longer periods of time in remote regions, compared to re-
gions with large surface fluxes. Observation sites that are far from large fluxes are therefore more
likely to produce a biased CO, budget than sites near to large surface fluxes. These “remote”
sites see a lower CO; signal from surface fluxes, and the transport errors at these locations gener-
ally covary over longer periods of time.

A number of factors may explain these relatively large error covariances in remote regions.
CO; transport over remote or oceanic regions is likely dominated by synoptic-scale weather pat-
terns that evolve over multi-day time periods. When CO, is transported across the oceans or
remote areas from source/sink regions, atmospheric CO, transport errors would likely covary at
timescales characteristic of this synoptic-scale air flow. Over large CO, source/sink regions, by

contrast, atmospheric concentrations are likely influenced more strongly by processes that occur
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over smaller time periods — grid-scale winds or boundary layer mixing. In addition, sustained
transport errors over regions of large biosphere flux would be more likely to cancel out at longer
timescales — due to the diurnal cycle of biosphere CO, uptake and release.

In addition to remote and ocean regions, month-long transport uncertainties are also large
across the entire Northern Hemisphere during February. A subsequent Sect. 7.3.4 explores possi-

ble reasons why these month-long biases occur.

7.3.3 Case study 1: the magnitude of temporally and spatially covarying atmospheric trans-

port errors relative to a CO, flux estimate

We construct a case study to understand the importance of temporal and spatial error covari-
ances relative to the magnitude of CO, surface fluxes. Figure 7.4 displays the results of this anal-
ysis for a selection of representative global CO, observation sites from Asia, Europe, and North
America. The y axis of each bar plot indicates the difference between the top and bottom of the
95 % confidence interval in monthly mean modeled concentrations. We first consider the re-
sults when covariances in atmospheric CO; transport errors are included in the analysis (dark
blue bars) and then compare those results to a setup in which we remove these error covariances
(light blue bars).

At this selection of sites, uncertainties in the monthly mean afternoon concentrations range
from 1.6 to 2.8 ppm (dark blue bars). These uncertainties are lower at marine sites like RYO and
TTA (see definitions in Fig. 4) and are higher at continental sites located near large biospheric
fluxes, sites like FSD and WBI. Note that this analysis only considers estimated uncertainties
due to meteorology. The capabilities of the atmospheric observations would deteriorate if other
errors were included, such as those due to imperfect measurements or due to finite-model reso-
lution (e.g., Gerbig et al., 2003; Masarie et al., 2011).

We subsequently remove temporal covariances in the errors to identify the role that these co-
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variances play in CO, transport uncertainties at the monthly scale. These results are displayed
as light blue bars in Fig. 7.4. When we remove the covariances, the monthly-scale uncertainties
are much smaller — by a factor of 5-20 at the individual observation sites. If CO, transport errors
were temporally independent, then errors of opposite sign and different magnitude would can-
cel out to a degree when averaged over 1 month (light blue bars). Instead, the transport errors
estimated by CAM-LETKEF covary in time, and this covariance prevents the errors from averag-
ing down (dark blue bars).

A multi-site comparison in Fig. 7.4 additionally indicates the role of spatial covariances in the
transport errors; the figure shows the uncertainties in CO, concentrations when averaged across
multiple observation sites within an eco-region. We compute the monthly-average afternoon
concentration across multiple sites for a given ensemble member. We then estimate a confidence
interval based upon the distribution of the 64 ensemble members.

The results indicate a large degree of spatial covariance in the atmospheric CO, errors. If the
errors had no spatial covariance, these errors would average down as more and more observa-
tion sites were added to the analysis. However, the dark blue bars in Fig. 7.4 have a similar mag-
nitude irrespective of whether the analysis was conducted on an individual site or on a collection
of many sites from an eco-region; the errors must therefore covary in space. In contrast, the light
blue bars (i.e., error covariances removed) do decrease in magnitude at the eco-region scale rela-
tive to individual observation sites. In that case, the errors do average out when more and more
sites are included in the analysis.

Figure 7.5 places the results of case study one in the context of the surface fluxes. This figure
displays the uncertainties in atmospheric CO, transport (the dark blue bars in Fig. 7.4) as a frac-
tion of the mean afternoon CO; boundary layer enhancement. As discussed in Sect. 7.2.4, this
enhancement approximates the CO, increment due to regional surface fluxes, and a similar CO,

increment is used by a number of top-down studies to estimate the surface fluxes. At the indi-
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vidual observation sites, the uncertainty in atmospheric CO; constitutes 13-150 % of the average
boundary layer CO, enhancement. This percentage is highest at marine sites like RYO and TTA
that see a relatively small boundary layer enhancement, and the relative magnitude of the uncer-
tainties is smallest at sites that see a very large enhancement due to large summertime vegetation
fluxes (e.g., at the WBI site). The uncertainties due to atmospheric transport are substantial rel-
ative to the fluxes but only when we include covariances in transport error. When we remove
these covariances, the uncertainty in monthly-average afternoon concentrations drops to only
2-22 % of the boundary layer enhancement.

The results of this analysis hold several implications for future atmospheric inverse models
and/or top-down studies that optimize CO, fluxes. Most existing inverse models account for at-
mospheric CO; transport errors in their statistical setup. In a Bayesian synthesis or geostatistical
inverse model, for example, this information is incorporated into a covariance matrix, and that
covariance matrix is used as an input to the equation that optimizes the CO, fluxes (e.g., Enting,
2002; Michalak et al., 2004; Ciais et al., 2011). However, the majority of existing studies assume
that this covariance matrix is diagonal (i.e., no error covariances), in part, because these tempo-
ral and spatial covariances are challenging to estimate (e.g., Lin & Gerbig, 2005; Lauvaux et al.,
2009). The present study, in contrast, indicates that both temporal and spatial error covariances
play an important role in monthly-scale errors in atmospheric transport.

Ignoring these error covariances could lead to numerous challenges. When we add more data
at an observation site or add more sites the analysis, the actual errors do not average down to
the extent that uncorrelated errors would. Rather, adding more data or more observation sites
provides more limited gains in accuracy. As a result, an inverse model that overlooks the error
covariances will estimate uncertainties in the CO, fluxes that are too small, and / or the inverse
model may erroneously map atmospheric transport errors onto the surface fluxes (e.g., Stephens

et al., 2007). Future inverse modeling studies could better account for these uncertainties by in-
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cluding off-diagonal terms in one of the covariance matrices used by the inverse model.
The next case study (Sect. 7.3.4) explores the meteorological factors that may be associated

with these persistent atmospheric transport errors.

7.34 Case study 2: which meteorological factors are associated with month-long atmospheric

transport biases?

In this case study, we use a synthetic tracer experiment (Sect. 7.2.5) to uncover possible drivers
of atmospheric transport biases at month-long timescales. The previous section (Sect. 7.3.3) ex-
plored the importance of covariances in atmospheric CO; transport errors, and this section in-
vestigates the meteorological conditions associated with these persistent errors.

Figure 7.6 displays the CV for monthly-averaged surface concentrations of the synthetic tracer.
The CV, a unitless quantity, does not just indicate where the uncertainties are largest. Rather, the
CV indicates the magnitude of these uncertainties relative to the mean modeled tracer concentra-
tion. Arguably, this noise-to-signal ratio measures the influence of transport uncertainties more
effectively than a simple standard deviation.

This coefficient shows a number of distinctive seasonal and spatial patterns. Like the uncer-
tainties in monthly-averaged CO; (Fig. 7.2¢, d), the CV in Fig. 7.6 is highest in terrestrial boreal
and arctic regions of the Northern Hemisphere during winter. The CV is lowest over Europe,
Australia, and the Amazon during all seasons.

The CV in Fig. 7.6 exhibits different spatial patterns over land and ocean regions, and these
respective patterns correlate with different sets of meteorological variables. Over the oceans, for
example, high CV values in Fig. 7.6a are clustered in zonal bands — along the Equator and along
40°S. In contrast, high CV values do not cluster into zonal bands to the same degree over terres-
trial regions. Rather, CV values are often high when temperatures are low (e.g., over Canada or

Russia in February).
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We plot the synthetic tracer CV against numerous modeled meteorological parameters to fur-
ther understand the possible drivers behind atmospheric transport uncertainties averaged over
these monthly timescales. To this end, we examine correlations between the tracer CV and 60
different meteorological parameters, including the uncertainties in the meteorological variables.
Figure 7.7 displays the two variables that correlate most strongly with the tracer CV over land
regions and over ocean regions, respectively.

Over land regions, meteorological conditions that lead to high atmospheric stability and low
energy are most closely associated with atmospheric transport errors. For example, a high tracer
CV is associated with low temperatures (R*> = 0.45) and low specific humidity (R*> = 0.40). Sim-
ilarly, a high tracer CV is correlated with low net solar flux (R? = 0.35), low planetary boundary
layer height (R?> = 0.33), and low vertical diffusion diffusivity (R*> = 0.31). Note that many of
these meteorological variables are closely related to one another, so the individual correlations
listed above are all interrelated.

In addition, several of the meteorological variables exhibit a nonlinear relationship with the
tracer CV, and the potential for bias in modeled atmospheric transport increases more quickly
in stable atmospheric conditions. For example, the CV increases more quickly when planetary
boundary heights are low.

In contrast to land regions, the tracer CV over the oceans is most closely associated with low
zonal wind speeds (R? = 0.29, Fig. 7.7). Over land regions, that correlation is zero. Uncertainties
in atmospheric transport over the oceans are also associated with low PBL heights (R? = 0.25).
These two meteorological variables explain different patterns in the tracer CV; PBL heights and
zonal wind speeds over the ocean are not correlated with one another (R> = 0), so these two
parameters may indicate different processes underlying the atmospheric transport errors.

These differences between land and ocean regions may reflect differences in synoptic-scale

circulation. Over the oceans, high CV values are clustered in zonal bands, and these clusters
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often occur at the transition between distinctive synoptic flow patterns. Modeled atmospheric
tracer transport is more uncertain in these transition regions — at the transition between south-
ern westerlies and southern trade winds and at the transition between the North Atlantic trade
winds and the westerlies. Zonal winds over the continents are often more variable than over the
oceans (Fig. S17 in the Supplement), and atmospheric transport uncertainties do not cluster into
the same, distinctive, zonal bands.

The results of this synthetic tracer experiment hold a number of potential applications to top-
down CO; flux estimation. The danger of obtaining a biased CO, budget is likely higher in re-
gions with consistent low energy and limited vertical mixing. A number of existing studies in-
dicate that uncertainties in PBLH and vertical mixing are closely tied to uncertainties in esti-
mated trace gas transport or in estimated trace gas fluxes (e.g., Stephens et al., 2007; Williams
et al.,, 2011; Miller et al., 2012b; Pino et al., 2012; Kretschmer et al., 2012). This study further sug-
gests that sustained transport errors due to PBLH are more likely in regions or at times when
PBL heights and mixing are consistently low. The meteorological model ensemble is not neces-
sarily more uncertain in these regions (see Figs. S15-516 in the Supplement). Rather, the extent
to which meteorological uncertainties translate into tracer transport uncertainties appears to de-
pend, at least in part, on the stability and net energy input associated with the boundary layer.

In summary, boundary layer energy and height explain some of the patterns in the estimated
transport errors, but other patterns are associated with uncertainties in synoptic flow and are not
related to a single meteorological parameter. In fact, over both terrestrial and oceanic regions,
individual meteorological parameters only explain a maximum of 29-45 % of the variability in
the tracer CV. This result stresses the utility of a meteorological model to calculate the variances
and covariances in atmospheric transport errors rather than relying on a single, meteorological
proxy.

Note that this study does not account for uncertainties in bottom-up, biogeochemical flux
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models due to uncertainties in driving meteorological variables. For example, process-based,
biogeochemical models of CO; typically require estimates of meteorological variables like hu-
midity, temperature, or precipitation to compute the surface fluxes. A number of existing studies
have used atmospheric data and / or atmospheric models to explore the meteorological variables
that drive CO; flux models. For example, Lin et al. (2011) explored how uncertainties in flux
model drivers affected fluxes estimated for Canadian boreal forests. They found that uncertain-
ties in downward shortwave radiation contributed to the largest uncertainties in the simulated
fluxes. Similarly, numerous studies indicate that both air temperature and humidity are drivers
of CO; fluxes (e.g., Law et al., 2002; Gourdji et al., 2012). These meteorological variables (e.g.,
downward shortwave radiation, temperature, and specific humidity) correlate with the persis-
tent atmospheric transport uncertainties discussed earlier in this section. A future study could
connect these uncertainties (in the biogeochemical model and in atmospheric transport) to gain
an even broader picture of how meteorological uncertainties affect CO, flux modeling and ulti-

mately top-down CO; flux estimates.

7.4 Conclusions

We use CAM-LETKEF to explore the characteristics of correlated or covarying atmospheric CO,
transport errors and the implications of those errors for CO, flux estimates. The first case study
examines the relative magnitude of these errors at the monthly timescale. At this scale, error co-
variances play a critical role in the uncertainties in modeled atmospheric CO,; we find that un-
certainties increase by a factor of 5-20 at individual CO; observation sites when we include the
error covariances in the analysis. These monthly—scale errors correspond to 13-150 % of the after-
noon CO, boundary layer enhancement, depending on the site in question.

Existing top-down studies often overlook these covariances, and these results imply that at-

151



mospheric CO, measurements contain less information about the fluxes than is often assumed.
As a result, existing inverse models may underestimate the uncertainties in estimated CO; fluxes
and/or may be vulnerable to unforeseen biases in the estimated fluxes. Accounting for these cor-
related errors can be as simple as modifying one of the covariance matrix inputs in a Bayesian
inverse model.

In a subsequent case study, we investigate the meteorological factors associated with month-
long biases in atmospheric transport. The largest short-term CO, transport errors correlate strongly
with the location of the largest surface fluxes, but month-long biases in atmospheric transport are
not only localized to regions with large fluxes. Rather, these biases may be more likely to occur
at observation sites that are far from large fluxes and in regions with high atmospheric stabil-
ity and low net radiation. Over the oceans, biases in atmospheric transport are also associated
with weak zonal winds. Existing top-down flux studies may be more likely to estimate inaccu-
rate regional fluxes under those conditions. However, a large fraction of the estimated atmo-
spheric transport errors cannot be described by a single meteorological parameter. This result
indicates the utility of a meteorological modeling system, like CAM-LETKE, to estimate errors
in atmospheric CO, transport. Through this framework, we can better understand the connec-
tions between uncertain atmospheric transport and uncertainties in CO, budgets estimated from

atmospheric data.
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6-hourly uncertainties (95% confidence interval):
a) February b) July

Uncertainty in month-long mean:
c) February

— —7 I T
-100 0 100 -100 0 100 (Ppm)
Figure 7.2: The top panels display average 6-hourly CO, transport uncertainties estimated by CAM-
LETKEF. The uncertainties (95 % confidence intervals) are for the surface model layer for (a) February and
(b) July 2009. The bottom panels (c and d), in contrast, display the uncertainties in month-long averaged

surface CO, concentrations. Note that these plots include model output from all 24 h of each day. The
Supplement provides analogous figures for daytime- or nighttime-only model output.
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Moody, Texas (WKT) — Observations
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Figure 7.3: Hourly-averaged CO, measurements at (a) Moody, Texas, and (b) Argyle, Maine, compared
against the CAM-LETKF model ensemble. Measurements are from the top inlet height at each location. In
this figure, the model ensemble represents uncertainties due to atmospheric transport but not other errors
(e.g., due to the fluxes and model resolution).
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95% confidence interval: monthly mean modeled concentrations (1pm-7pm local time)
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Figure 7.4: The uncertainties in monthly-averaged, afternoon atmospheric CO; (Sects. 7.2.4, 7.3.3) at a se-
lection of representative, global CO, observation sites. Panels (a) and (b) show the results at each site for
February and July 2009, respectively. Dark blue bars indicate the difference between the top and bottom
of the 95 % confidence interval when we include error covariances. The light blue bars indicate the results
when we remove these covariances in atmospheric transport errors. Observation sites in the figure in-
clude Ryori, Japan (RYO); Ochsenkopf, Germany (OXK); Talk Tower Angus, UK (TTA); East Trout Lake,
Saskatchewan, Canada (ETL); Fraserdale, Ontario, Canada (FSD); and West Branch, Iowa, USA (WBI). For
more information on these observation sites, refer to Table S1 in the Supplement.
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Uncertainty in monthly mean modeled concentrations as a percentage of the CO, increment from surface fluxes
a) February b) July
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Figure 7.5: Uncertainty in monthly-averaged afternoon CO, concentrations as a percentage of the average
afternoon CO, boundary layer enhancement. This figure places the uncertainties from Fig. 7.4 (dark blue
bars) in context of the afternoon CO; increment from surface fluxes. Larger percentages indicate greater
potential for bias in monthly CO, budgets estimated from atmospheric data.
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Figure 7.6: The coefficient of variation (CV, unitless) for the monthly-averaged model surface layer. The
results plotted here are for the synthetic tracer simulation (Sects. 7.2.5, 7.3.4). In that simulation, the syn-
thetic fluxes have a constant spatial distribution. The resulting CV (¢ / 1) shows the distribution of month-
long, surface-level transport uncertainties independent of the spatial distribution in the fluxes.
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Figure 7.7: Each panel shows the relationship between the synthetic tracer CV (Fig. 7.6) and various
monthly-averaged meteorological parameters estimated by CAM-LETKE. The top row (a) shows the re-
sults for terrestrial regions while the bottom row (b) displays the results for ocean/marine regions. Darker
colors in each panel indicate a higher density of points. We test the correlation with 60 different parame-
ters (Table S2 in the Supplement) and plot the two parameters that correlate most closely with the tracer
CV over terrestrial and marine regions, respectively. In all cases, we fit both a standard major axis regres-
sion and nonlinear least squares (m) and plot the regression with the higher correlation coef-

ficient.
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8

Conclusion

In this thesis, we use atmospheric data to estimate the magnitude, spatial distribution, and sea-
sonality of N>O and CH4 emissions over North America. We also leverage novel statistical tech-
niques to infer information about the plausible source sectors or processes driving these emis-
sions. We then analyze how those drivers differ from existing bottom-up estimates. Through
these efforts, this research creates pathways to reconcile differences between bottom-up emis-
sions estimates and the information contained within measured atmospheric concentrations.

We estimate anthropogenic N,O and CH,4 emissions that greatly exceed most existing inven-
tory estimates. In contrast, we estimate natural CHy sources that are smaller than most existing
process-based biogeochemical models. My results indicate that total N,O emissions in the US
are likely 2.5 to 3.1 times higher than the commonly-used, bottom-up US Environmental Protec-
tion Agency (EPA) inventory. Furthermore, we find anthropogenic methane emissions that are
approximately 1.5 times existing EPA estimates.

We further examine seasonal variability in the emissions. N,O sources over the US are highly

seasonal and peak early in the growing season. For example, emissions in June are approxi-
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mately 4 — 7 times larger than emissions in winter months. In the case of methane, we estimate

a seasonal cycle in wetland methane emissions that is broader than in most existing biogeochem-
ical models. These existing models appear to shut off methane emissions prematurely during the
fall season and may be too sensitive to surface temperatures, among possible explanations. US
anthropogenic methane emissions, by contrast, show no significant seasonal cycle.

We also estimate a spatial distribution of N,O and CH, emissions using atmospheric data, and
these estimates often differ from the distribution in existing bottom-up inventories or models.
We find the largest N,O emissions in Iowa and California where fertilizer use is highest, not over
Gulf Coast wetlands where the DLEM inventory predicts the largest emissions. These results
imply that fertilizer application, not soil moisture/ temperature, is the primary driver of N,O
release from soils.

Our methane estimates also have a different spatial distribution from existing inventories.

We find that three states alone account for ~25% of all US methane emissions — Texas, Okla-
homa, and Kansas. Atmospheric methane measurements in those states correlate strongly with
propane, a tracer of the oil and gas industries. To that end, this thesis indicates that methane
leaks from the oil and gas industries far exceed US government estimates that are based upon
limited measurements at individual well sites. In addition, we find that existing inventories
likely underestimate methane emissions from ruminants and manure by a factor of two. In sum-
mary, our results indicate a very different magnitude and distribution of anthropogenic methane
emissions in the US than previously estimated.

Over wetland regions, we find that most existing biogeochemical methane models contribute
negative information on the spatial distribution of wetland fluxes; only 14-33% of existing bio-
geochemical models describe the distribution of fluxes more effectively than a spatial constant
(as seen through atmospheric observations). The best models estimate wetland coverage using

land cover maps, instead of using remote sensing inundation datasets. We also built a relatively

159



simple methane flux model that shows better agreement with available atmospheric observa-
tions than the most sophisticated or complete process models. These results, using a model-data
fusion, can help reconcile large existing uncertainties in methane fluxes from temperate and bo-
real wetlands.

New and forthcoming N,O and CH, observations promise to create a wealth of opportunities
for future work. These observations include more than 20 US, tower-based sites from a privately-
funded effort by Earth Networks, new observation sites operated by Environment Canada, and
new remote sensing efforts that include the TROPOMI satellite instrument. An important fu-
ture challenge will be to leverage this wealth of data in a way that can provide information about
individual source sectors or flux drivers, information that can be compared directly against the
components of an emissions inventory. In March 2014, the Obama administration announced
the Climate Action Plan for Methane and has recently developed targets for the oil and gas in-
dustries. These regulations will require independent means to evaluate methane emissions, par-
ticularly approaches that can provide reliable information on individual sources. This thesis is a

stepping-stone toward that long-term goal.
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A

Supplemental material for chapter 2

This supplement contains further explanation of the modeling and statistical methods and pro-

vides additional model validation.

A.1 Atmospheric modeling approach

A.1.1 Transport model overview

This study utilizes STILT, the Stochastic Time-Inverted Lagrangian Transport model, for all at-
mospheric transport simulations Lin et al. (2003). Model runs use an ensemble of 500 particles
followed 10 days back in time. The methane increments computed from continental surface
sources are added to the methane boundary condition, the concentration of methane in air masses
before being influenced by emissions in North America.

The model equation can be written as Gerbig et al. (2003)

z=Hs+e¢ (A1)
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where z (dimensions n x 1) is the contribution of continental sources to the observation sites, and
s (m x 1) are the true, unknown methane emissions. Any estimate of the unknown emissions (s)
is termed 5. The total methane concentration measured at the tower or aircraft is given by z + b,
where b (n x 1) is the boundary condition. The influence footprint H gives the concentration en-
hancement at the measurement site due to unit emission flux from each grid cell. The footprint
has units of concentration per surface flux, or ppb per umol m~2s~!. Each row of H (n x m) is
the footprint associated with an individual methane measurement. Finally, € (n x 1) describes
model-data mismatch errors, all model or measurement errors that are unrelated to an imperfect
emissions estimate. In other words, this mismatch remains the same irrespective of the emissions
estimate (5) used in the model. The mismatch includes, but is not limited to, errors in modeled
transport, the methane boundary condition (b), and the methane measurements. Common in-
version frameworks based on Gaussian statistics, including this one, assume that all model-data
mismatch errors (¢) are random with a mean of zero and a covariance described by the n x n
matrix R.

STILT trajectories are driven by Weather Research and Forecasting model (WREF, version 2.1.2)
meteorological fields Skamarock et al. (2005); Nehrkorn et al. (2010). Our WRF simulations con-
sist of sequential 30-hour meteorological forecasts initiated daily from NARR (North American
Regional Reanalysis). All simulations include convection using a Grell-Devenyi scheme Grell &
Devenyi (2002). These wind fields use a nested resolution: 10-km over most of the continental

United States and 40-km over other North American regions.

A.1.2 Methane boundary condition

The boundary condition (b) could be constructed either from interpolated measurements or from
the output of a global chemical tracer model (such as Geos-Chem). We choose the former ap-

proach due to uncertainties associated with the global distribution of methane emissions.
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We construct the boundary condition using a two stage process. First, we use an empirical
methane boundary curtain over the Pacific Ocean as an initial guess for b. This western curtain
consists of NOAA measurements near or over the Pacific Ocean, interpolated latitudinally, verti-
cally, and daily using a curve-fitting procedure Thoning et al. (1989). The individual trajectories
in every 500-trajectory STILT simulation typically end at different locations and reach the west-
ern boundary at different latitudes, times, or elevations. The mean statistics of the trajectory en-
semble at the western curtain provide the initial value for b. Most of the STILT back-trajectories
in this study reach the Pacific coastline less than 10 days after leaving the observation site (64%).
100% of trajectories originating from the WGC site, 83% of those originating at BAO, 60% at
WBI, and 60% from WKT reach the Pacific Ocean. The Martha’s Vineyard and Argyle, Maine,
sites have the lowest fraction of trajectories reach the Pacific Ocean (37% and 32%, respectively),
though many of the remaining trajectories never exit the continent during the 10 day span of the
trajectory run.

Second, we use NOAA aircraft observations over North America in the free troposphere (>3000m)
to fit the initial boundary estimate to regional conditions or airflow patterns. The adjustment
is most relevant for observation sites farther from the western curtain (e.g., Massachusetts and
Maine). We calculate, for different regions and seasons, the mean model-observation differ-
ence above 3000m using the initial boundary guess and EDGAR v4.2. Regions include the west-
ern, eastern, south-central, and north-central portions of the United States over winter, spring,
summer, and fall. The purpose of this adjustment is twofold. First, it accounts for the inflow of
“clean background” air that may enter a region outside the prevailing westerlies. Second, it ac-
counts for the small amount of methane oxidation that may occurr en route between the west-
ern boundary curtain and the methane measurement sites. This aircraft-based adjustment has
a mean of —2.7 ppb and a maximum magnitude of —7 ppb. An inversion using the initial west-

ern boundary curtain without the regional adjustment estimates methane budgets of 32.0 and 7.7
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TgC yr~! for the US and Texas-Oklahoma-Kansas, respectively, within about 5% of the final best
estimate in the main article.

The boundary condition exhibits marked seasonality, with an average 40 ppb peak in winter.
This peak reflects large-scale seasonal changes in Northern Hemisphere clean-air concentrations.
WRF-STILT does not explicitly model atmospheric oxidation processes. We fit the boundary

condition to local or regional free troposphere values, eliminating the need to consider longer
range oxidation chemistry. Furthermore, the footprint (H) is greatest within 2-3 days of the asso-
ciated measurement. Methane has a global-averaged lifetime of 7-11 years Prather et al. (2012);

Ciais et al. (2013), implying methane decay of less than 1-1.5 ppb over these 2-3 day time scales.

A.1.3 Study time period

We choose 2007 — 2008 as the time frame of this study for two reasons. First, there are no daily
methane measurements from US tower sites before mid-2006, with the exception of the Niwot,
Colorado, sites. Weekly to monthly methane observations are available at some sites prior to
2006. Second, the WRF meteorology fields used here are only available through 2008. These
fields are validated by Nehrkorn et al. 2010 Nehrkorn et al. (2010) and used in a number of ex-
isting studies Kort et al. (2010); Huntzinger et al. (2011); Gourdji et al. (2012); Miller et al. (2012b),

but they have a limited time scope.

A.1.4 Observations

We use diverse methane measurements taken at tall towers or by aircraft during 2007-2008. Mea-
surements include daily flask samples from the NOAA tall tower network (weekly at Argyle and
Ponca City): Argyle, Maine (AMT, 45 °N, 69 °W, 107m above ground level (agl)); Erie, Colorado
(BAO, 40 °N, 105°W, 300m agl); Park Falls, Wisconsin (LEF, 46°N, 90°W, 244m agl), Martha’s
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Vineyard, Massachusetts (MVY, 41°N, 71°W, 12m agl); Niwot Ridge and Niwot Forest, Colorado
(NWE, NWR, 40°N, 105°W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37°N, 97°W, 60m agl);
West Branch, Towa (WBI, 42°N, 93°W, 379m agl); Walnut Grove, California (WGC, 38°N, 121°W,
91m agl), and Moody, Texas (WKT, 31°N, 97°W, 122, 457m agl) (see main article Fig. 2). The in-
verse model incorporates surface data and aircraft measurements up to 2500m agl;. observations
at higher altitudes are less sensitive to surface emissions and are reserved for model validation
and adjustment of the boundary condition. The flask and aircraft data are sampled only during
the daytime hours, so this study is not affected by the large uncertainties associated with model-

ing the nocturnal boundary layer Matross et al. (2006); Gourdji et al. (2010).

A.2 Statistical methods

We utilize a geostatistical inverse modeling (GIM) framework to estimate monthly methane
emissions (s) for 2007 and 2008 on a 1° x 1° latitude-longitude grid Kitanidis & Vomvoris (1983);
Snodgrass & Kitanidis (1997); Michalak et al. (2004):

s =XB+N(0,Q) (A.2)

The GIM uses a deterministic model (Xp) for the prior estimate of emissions, similar to a multi-
ple regression. Each column of X is a different spatial dataset, including a column for a constant
component, and f is the vector of associated unknown coefficients. This differs from a Bayesian
synthesis inversion, which typically uses a prior with a static, known magnitude Rodgers (2000);
Tarantola (2005).

The GIM also has a stochastic component, described by a multivariate normal distribution N/
with a mean of zero and covariance matrix Q. This component describes all emissions that do

not fit the spatial pattern of the deterministic model. Unlike most Bayesian synthesis inversions,
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the GIM accounts for spatial and/or temporal correlation (i.e., covariance) in the stochastic com-
ponent by including off-diagonal terms in Q.

The GIM framework allows the atmospheric observations to determine the spatial patterns of
both the deterministic and stochastic components. Also, the formulation ensures that the prior
has no overall bias, an important statistical assumption of most inversion frameworks. A num-
ber of existing studies have used this approach successfully for trace gas surface flux estimation
Michalak et al. (2004); Mueller et al. (2008); Gourdji et al. (2008, 2012); Miller et al. (2012b).

The best estimate of emissions (s) is typically the minimum of the geostatistical cost function

Michalak et al. (2004):

Ligo =3In|Q| + $In|R|+ }(z — Hs)'R™'(z — Hs)

+ 36 - Xp)TQ (s~ Xp) (A3)

This cost function, based on Gaussian statistics, cannot preclude large negative emissions, and

we use Lagrange multipliers to enforce nonnegativity Gill et al. (1981); Miller et al. (2014a). Large
negative emissions would be unrealistic for methane given that the soil sink is only ~4% of global
methane loss Dutaur & Verchot (2007). Any soil sink over the US would be far smaller than the
posterior uncertainties and therefore not detectable by the inversion framework with any degree
of certainty. Lagrange multipliers, the method used to enforce nonnegativity, is iterative and
produces a robust estimate of the posterior emissions subject to physical bounds. However, the
resulting posterior uncertainties are generally too large and should be interpreted with caution.

A recent paper discusses this method in detail and the impact on the final emissions estimate

Miller et al. (2014a).
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A.2.1 Covariance matrix estimation

Restricted maximum likelihood (REML) provides an objective way to estimate the structure and
magnitude of the error covariance matrices in the inversion (R and Q); it guarantees that the
actual inversion residuals match against those predicted in the covariance matrices Kitanidis
(1986); Michalak et al. (2004).

REML estimates the parameters (6) that define R and Q by minimizing a modified form of the
cost function in Eq. A.3. In practice, it may be difficult to estimate the covariance matrix param-
eters (0) using Eq. A.3 directly because this function also depends on the unknown values of the
fluxes (s) and the drift coefficients (8). The restricted likelihood integrates over all possible val-
ues of s and B in Eq. A.3. The integration effectively removes s and f from the cost function, and
the function is subsequently reformulated only in terms of the covariance matrices and several

known pieces of information (see Kitanidis (1986) for a full derivation):

LQ = //Ls“gﬂdsdﬁ
pJs

= 1In|W| + I In X"H'WHX| + 1zEz (A.4)
W =HQH' + R (A5)
E =w ! - wlaxxX"H'w-tHX)XTHTw! (A.6)

The optimal covariance matrix parameters are those that minimize the above equation, typ-
ically estimated with an iterative Gauss-Newton algorithm. Kitanidis (1983b) originally devel-
oped REML for geostatistics; many subsequent studies from geostatistics and other fields indi-
cate that REML is one of the most accurate and unbiased methods for estimating errors and /or

the structural parameters of a statistical model Robinson (1987); Kitanidis (1987); McGilchrist
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(1989); Wilson (1989); Cheang & Reinsel (2000); Lark & Cullis (2004); Lark et al. (2006). Among
other advantages, it ensures that the weighted sum of squares residuals from the inversion will
follow the expected x? distribution Kitanidis (983b).

In this study, we construct the covariance matrix R as a diagonal matrix. To estimate the diag-
onal elements of R (G%{, the model-data mismatch variance), we first calculate the variance of the
model-measurement residuals for each measurement site when the STILT model is run with the
EDGAR v. 3.2 FT2000 anthropogenic emissions inventory. Two top-down studies find that this
inventory has the correct overall magnitude over the US Kort et al. (2008, 2010), and thus we use
this version of EDGAR over others as a starting point in error estimation. We then use REML to
estimate a single scaling factor to align the initial estimate with the variances suggested by the
atmospheric data.

The estimation of Q follows slightly different form. The setup here estimates a constant value
for the a priori variance (the diagonal elements). In other words, we assume there is little spatial
or temporal variability in the variance in the the stochastic component of the emissions estimate,
an assumption that makes sense given large emissions in disparate regions of the US and ap-
parent absence of large seasonality in anthropogenic sources. Other parameters of Q to estimate
include I, the decorrelation length parameter and ¢, the decorrelation time parameter (where 31
and 3t are the total approximate decorrelation length and time, respectively). REML would not
converge on a decorrelation length for the off-diagonal elements of Q. This may be due to geo-
graphic heterogeneity in the correlation lengths of the stochastic component. We set a decorre-
lation length parameter (I) at 100km, a compromise between emissions uncertainties that might
be correlated over the distance of a large urban area and uncertainties in agricultural emissions
that may be correlated over a larger regional scale. Test inversions with | = 50, 300, and 500 km
provide a measure of the sensitivity of the estimated fluxes to the choice of the decorrelation pa-

rameter. Ultimately, the choice of I has little impact on the total US anthropogenic budget (less
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Figure A.1: US methane emissions by sector from several existing inventories. All methane budgets are
from the year 2005 except EDGAR v3.2 FT2000 which estimates emissions from 2000.

than 1 TgC/yr).

Using REML, we estimate a variance in the stochastic component of 0.041+0.001 ymol m 25!
(i.e., the square root of the diagonal elements of Q). The decorrelation time and length parame-
ters in the exponential covariance function are estimated at t = 36 + 5 days and / = 100 km,

respectively.

A.2.2 The deterministic model

The GIM setup here adopts spatial activity datasets from the EDGAR inventory as predictors

(X) for the distribution of methane emissions (see Table 1 in the main article and the EDGAR
web site [http:/ /edgar.jrc.ec.europa.eu/]) and uses atmospheric data to estimate the associated
emission factors (B). The emissions factors in existing inventories can be highly uncertain and
have recently changed by up to 50% in EDGAR for sectors such as coal and natural gas Euro-
pean Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency

(PBL) (2010) (Fig. A.1).
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We use a model selection method to assemble an optimal set of spatial activity datasets for
the inversion. These methods will select as many predictors for use in X that can explain vari-
ability in the data but will prevent an over-fit or unreliable coefficient estimates Zucchini (2000);
Konishi & Kitagawa (2008). We implement one of the most common methods, the Bayesian in-
formation criterion (BIC) Schwarz (1978); Mueller et al. (2010); Gourdji et al. (2012). The BIC nu-
merically scores all possible combinations of activity datasets based on how well they improve
goodness of fit (i.e., the log-likelihood of the model, similar to the weighted sum of squares)
and applies an increasing penalty for model complexity. For each additional activity dataset,
the penalty increases with the natural log of number of observations. The best candidate model

(X) is the one with the lowest BIC score Gourdji et al. (2012):

B = XTH'w1HX)"'X"TH'w-1; (A.7)
p=( )

BIC = In|W| + (z — HXB)TW~1(z — HXB) + p In(n) (A.8)

where p is the number of predictors (number of columns in X), and 7 is the number of methane
measurements.

The drift coefficients (8) in the model of the mean must be positive, since a spatial dataset
should never contribute negatively to the posterior methane emissions. Hence we eliminate all
candidate models from consideration that yield negative coefficients.

The BIC does not support hypothesis testing with p-values, but the difference in BIC scores
provides a metric of confidence Kass & Raftery (1995). A score difference greater than 2 indicates
notable evidence against the higher scoring model and a score increment greater than 10 indi-
cates “very strong” evidence against that model.

Only two spatial datasets from EDGAR are identified by the BIC as important predictors of

methane observations over the US:
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Figure A.2: The contribution of different activity datasets to the overall emissions estimate. The sum
of the constant and stochastic components (c) includes all sources not described by the spatial activity

datasets (the sum of a and b). The contribution of the activity datasets (a,b) is constant throughout the two
years, and the stochastic component (c) changes by month (averaged in the plot here).

B, + By[population density] + B,[ruminant density]

where B, B, and B, are the coefficients of the spatial activity data. The first term, f8,, repre-
sents the mean of all sources with spatial patterns other than population or ruminant density.
Table 1 provides example BIC scores for this and other candidate models, including what are
commonly considered the largest methane source sectors. The BIC scores strongly suggest that
there is either insufficient data to include more than two activity datasets or that several existing
activity datasets do not adequately describe the methane observations. In particular, the table
indicates that the observation network is not sufficiently sensitive to coal sources and that the oil
and gas production activity dataset from EDGAR do not accurately represent the spatial distri-
bution of the methane emissions consistent with observations.

Fig. A.2 displays the methane budget from each of the spatial datasets in the deterministic
model (e.g, scaled by the estimated coefficients, B) It is important to note that population density
serves as a proxy for a number of source sectors that are co-located with population (e.g., natural

gas distribution, landfills, and wastewater treatment) at the 1° spatial scale. Additionally, fuel
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Figure A.3: A visualization of the estimated model-data mismatch across different methane measurement
sites, compared against the two-year averaged contribution from anthropogenic emissions at each site (z,
the concentration measurements minus the boundary condition and modeled wetland contribution).

extraction and animal husbandry are co-located over Texas and Oklahoma, so some emissions

assigned to ruminant density (Fig. A.2a) may instead partially reflect fossil fuel industry sources.

A.3 Uncertainty analysis

A.3.1 General uncertainties in the model and measurements

Figure A.3 provides a visualization of the model-data mismatch errors estimated by REML (oR,
the standard deviation of €). This mismatch includes random model and measurement errors
unrelated to the emissions: errors in the wind fields, boundary layer height, methane boundary

condition, and spatial / temporal aggregation, among other error sources. Model-data mismatch
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typically ranges from 40-70% of the total methane emissions signal seen at each tower, but the
relative mismatch is higher at “clean air” sites like Niwot Ridge, Colorado (NWF/NWR). Ab-
solute uncertainties are largest at measurement sites close to mountain ranges (e.g., BAO and
WGQ). This likely reflects difficulties in modeling wind fields near complex topography. Over
Texas and Oklahoma, where the estimated anthropogenic methane emissions are among the
largest in the US, the model-data mismatch is just under half the magnitude of the total average

methane signal.

A.3.2 Uncertainties in the emissions estimate

The posterior covariance matrices (denoted V) provide a measure of uncertainty in the estimated

emissions ($) and estimated coefficients (ﬁ) Michalak et al. (2004):

—1
Q—l + HTR—lH Q—lx
= (A.9)
XTQfl XTQle

V. V

0>
=

Vi V

=

Eq. A.9 is the inverse of the Hessian of the cost function (Eq. A.3). The posterior covariance ma-
trix of §, summed across different months and locations, produces the confidence intervals on the
methane budgets listed throughout the paper. All uncertainties listed are 95% confidence inter-
vals, unless otherwise noted.

The uncertainties in the emissions estimate vary depending on the temporal or spatial scales
of interest. For example, the uncertainties can be larger than the estimated emissions at the 1°
latitude-longitude spatial scale and monthly temporal scale. However, uncertainties decrease as
the emissions estimate is averaged over larger regions and longer times (Fig. A.4). Intuitively,
the uncertainties are higher at finer spatial / temporal scales because the atmospheric methane

data have limited capacity to determine the precise location or time of grid-scale emissions. The
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Figure A.4: The methane emissions estimate in this study has a 1° lat.—lon. spatial resolution and monthly
temporal resolution. The uncertainty in the emissions estimate declines as the estimate is averaged to
greater spatial and temporal scales. Panel (a) shows how uncertainties over the south-central US decrease
as the grid-scale estimate is aggregated in time. Panel (b) displays how the uncertainties decrease as the
annual-average estimate is averaged spatially. Uncertainties listed are standard deviations.

methane data, however, can indicate regional or national average emissions with greater confi-
dence. Mathematically, the uncertainties per unit area decrease at aggregated spatial / temporal
scales because the covariances in the posterior covariance matrix are often negative. Hence, at
aggregated scales, the mean of the variances/covariances is usually smaller.

The covariance matrix V; encompasses most but not all uncertainties in the emissions esti-
mate. It accounts for uncertainties in the drift coefficients (ﬁ) and in the stochastic component of
the emissions, and it accounts for uncertainty due to randomly-distributed model-data mismatch
errors (¢ = N(0,R), see Eq. A.1). However, existing statistical inversions cannot explicitly ac-
count for model-data mismatch errors that produce overall bias (i.e., if € has a nonzero mean).
Potential bias-type errors in WRE-STILT are discussed separately throughout the remainder of

the supplement.
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Figure A.5: Monthly anthropogenic methane budgets by season and associated 95% confidence inter-
vals. The lack of strong seasonality implies minimal modeling errors due to wetland emissions, seasonal
boundary condition biases, or seasonal wind field biases.

A.3.3 Wetland sources

We model the wetland contribution using the Kaplan wetland inventory Kaplan (2002); Pickett-
Heaps et al. (2011), scaled in magnitude to match the observations as in Pickett-Heaps et al.
(2011); Miller et al. (2014c). This signal (about 9 ppb in late summer, 2.0 Tg C TgC yr~! for the
continental US) is then removed from z to subtract the influence of wetland sources from the
data. Wetlands make only small contributions to the signals at most of the observation sites in
the US, and thus cannot be reliably constrained in the inversion. After this subtraction, the inver-
sion produces optimized anthropogenic budgets with little seasonal variation (Fig. A.5). Since
wetland emissions are strongly seasonal, this result indicates that our procedure does not pro-
duce wetland-related biases.

We also run a separate test inversion using the Dynamic Land Ecosystem Model (DLEM) for
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wetland subtraction instead of the Kaplan model Tian et al. (2010, 2011); Miller et al. (2014c) (also
2.0 TgC yr~! for the continental US). This test inversion produces a US anthropogenic methane
budget of 34.1 TgC yr~! and a south-central US budget of 8.1 TgC yr~!, very similar to the re-
sults using Kaplan wetland emissions. Hence we conclude that our results are independent of
the source model used to account for wetland emissions.

Furthermore, wetland models predict only small to modest emissions over the largest source
regions in our study. Two recent studies compare wetland methane fluxes for a number of bio-
geochemical models Melton et al. (2013a); Wania et al. (2013). None of the models put significant
wetland emissions over Texas or Oklahoma, both relatively dry regions where our study found
large methane emissions. Existing land maps indicate wetlands along the Mississippi River and
Delta, but modeled wetland emissions in this region are nonetheless five times smaller than
the anthropogenic sources estimated by our study in this area Melton et al. (2013a); Wania et al.
(2013). The correlation between methane concentrations and propane in the south-central region

additionally reinforce the attribution of high CHj fossil fuel extraction and processing.

A.3.4 Geological sources

Several studies report methane emissions from geological degassing, including ground seep-
age, geothermal emissions, and volcanic emissions Judd et al. (2002); Kvenvolden & Rogers
(2005); Etiope et al. (2008). This study does not account for geological sources explicitly, but pre-
vious studies indicate that these fluxes would be small compared to the magnitude of US anthro-
pogenic emissions. The estimated magnitude of this source ranges from 2.2 — 9% of total global
emissions Judd et al. (2002); Kvenvolden & Rogers (2005); Etiope et al. (2008). One study esti-
mates that terrestrial geological sources, in particular, contribute 1.1 - 2.8% of the global methane
budget, and most emissions are attributable to volcanic activity and mud volcanoes Judd et al.

(2002). A few mud volcanos exist along the California coastline, but these geological features are
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otherwise uncommon over the continental United States Dimitrov (2002). Based upon this infor-
mation, we estimate at most a ~ 5% uncertainty in the emissions derived here due to geological

degassing.

A.3.5 Uncertainties in sector-based emissions estimates

The section analyzes in greater depth the uncertainties in sector-based emissions estimates (e.g.,
for ruminants or the approximate fossil fuel budget). These uncertainties, listed in the main ar-
ticle, are calculated using the covariance matrices for 8 and § (Eq. A.9), summed to large spatial
and annual temporal scales. The uncertainties on the sector-based budget estimates are large due
to uncertainties in f. The coefficients describe emissions with spatial patterns similar to the ac-
tivity data, and co-located source sectors or errors in the activity datasets make the coefficient
estimates (ﬁ) less definitive. For example, ruminants and fossil fuel extraction have similar dis-
tributions over the south-central US, so some of the emissions assigned to ruminants in the de-
terministic model could instead be from the Texas and Oklahoma fossil fuel extraction sector.
Similarly, if landfill emissions do not always coincide with population, then some landfill emis-
sions may appear in the ruminant (Fig. A.2a), mean, or stochastic components (Fig. A.2c) instead
of the population component (Fig. A.2b). Hence, the atmospheric methane data provides strong
constraints on total emissions at the regional or national scale, but estimates by source sector of-
ten have larger confidence intervals.

We run a test inversion to investigate the possible effects of spatial correlation between rumi-
nants and other source sectors. In this test inversion, we estimate different emissions factors (B)
for ruminants over four different regions of the United States: the western (CA, OR, WA, NV,

ID, MT, AZ, UT, WY, NM, CO), the midwest (NE, SD, ND, MN, IA, MO, WI, IL, MI, IN), the
south-central (TX, OK, KS, LA, AK), and the eastern United States (MS, TN, KY, AL, FL, GA,

NG, SC, VA, WV, OH, PA, NY, MD, NJ, CT, VT, NY, NH, MA, RI, ME). Any differences in emis-
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sions factors by region represent one of three possibilities. First, emissions factors for agriculture
may differ due to regional agricultural practices or climate. Second, the range may be caused by
differences in the spatial distribution of the ruminant activity dataset from actual agricultural
emissions. Third, the range may represent uncertainties caused by source sectors co-located with
ruminants. Our agriculture emissions factors in the test case are lowest over the west and mid-
west (1.25 and 1.3 times EDGAR, respectively) and highest over the south-central US (2.6 times
EDGAR). We repeat the calculation of south-central US non-agriculture and non-population
emissions. In the main article, we estimate this budget at 3.7 4- 2.0 TgC yr~!, a budget that could
represent oil and gas emissions or unaccounted landfills. If we apply the western US ruminant
emissions factor to Texas, Oklahoma, and Kansas, we obtain a higher estimate for this fossil fuel
and/or landfill budget of 4.74 TgC/yr. Alternately, if we apply the south-central US ruminant
emissions factor to Texas, Oklahoma, and Kansas, we obtain a lower estimate for the fossil fuel
and/or landfill budget of 2.94 TgC/yr. These estimates are within the confidence intervals listed
in the main article for ruminants and fossil fuel extraction and/or ruminants. Note that the dif-
ferent setup for X in this test case does not affect total posterior methane budgets in each region

by more than 1%; changes in the configuration of X only affects emissions attribution by sector.

A.4 Model capability and validation

This section further validates the WRF-STILT model, the estimated methane budget, and dis-

cusses the geographic coverage of the methane observations.

A.4.1 Model transport and footprint validation

The WRE fields in this study are validated extensively by Nehrkorn et al. (2010), and several per-

tinent statistics are included here. The WRF simulations are set up specifically to conserve mass
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and do so by a factor of ten better than other meteorological products like the NCEP global anal-
ysis fields (FNL) Nehrkorn et al. (2010). Compared to US and Canadian radiosondes, horizontal
winds in WRF exhibit a root mean squared error (RMSE) of 2.5 — 4 m/s with no change in error
statistics at the top of the planetary boundary layer Nehrkorn et al. (2010).

Several previous inversion studies with STILT estimate emissions that are consistent across
different meteorologies and compared with Eulerian models. This further validates model trans-
port and indicates a lack of overall bias in the WRF-STILT footprints (H). Miller et al. (2012) use
both WRF and the Regional Atmospheric Modeling System (RAMS) with STILT to estimate US
nitrous oxide emissions; the US budgets match within 12 + 6% Miller et al. (2012b). Furthermore,
STILT studies of carbon monoxide and methane produce budgets comparable to top-down emis-
sions estimates with the Geos-Chem model. Constraints on summertime US carbon monoxide
emissions with RAMS-STILT and Geos-chem match to within 10% Hudman et al. (2008); Miller
et al. (2008), and methane budgets for the Hudson Bay Lowland in Canada estimated with WRE-

STILT and Geos-Chem are similar within 5% Pickett-Heaps et al. (2011); Miller et al. (2014c).

A.42 Validation of the methane boundary condition

Methane measurements from aircraft show good agreement with modeled concentrations, no-
tably above 3000m where regional surface emissions have little influence (see Fig. 4 in the main
article). At these altitudes, the mean measurement — posterior model difference is 2.8 ppb with
a standard deviation of 18 ppb. These statistics reflect uncertainties in the modeled boundary
condition but also reflect uncertainties in the modeled vertical gradient and in advection or con-
vection of heterogeneous air masses in the upper free troposphere.

To test the effect of a 2.8 ppb uncertainty, we subtract this amount from the boundary condi-
tion and re-estimate the emissions. This test inversion produces US and south-central budgets of

35.4 + 1.4 and 8.4 + 1.0 TgC yr~!, respectively. Given these uncertainties, the methane budgets
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presented in this study may be slightly low by 3 -9 %.

A.43 Comparison against aircraft and tower data

Regular methane observations from the NOAA aircraft monitoring network help validate the
vertical model structure (i.e., planetary boundary layer height and convection). The comparison
in Fig. 4 of the main article indicates several notable features of the model. First, the close match
between model and observations in the free troposphere above 3000m confirms the suitability of
the two-stage methane boundary condition, as discussed earlier. Second, the vertical structure in
the model matches well against observations (to within 20 ppb at any aircraft sampling location).
Two additional figures provide further model-data comparison. First, Fig. A.6 compares mod-
eled methane concentrations against time series of measurements at the NOAA tower locations.
As discussed in the main article, the EDGAR inventory underestimates emissions in Califor-
nia (WGC tower) and Texas (WKT tower) more severely than in other geographic regions of
the United States. Second, Figure A.7 compares all methane observations used in the inversion
(from aircraft and tall tower locations) against modeled concentrations. Both figures (A.6 and

A7) highlight the improved data-model fit given by the posterior emissions estimate.

A4.4 The utility of aircraft data in the inversion

To gauge the utility of aircraft data in the inversion, we run a test GIM using only observations
from the ground sites. This inversion estimates a US methane budget of 37.4 & 3.0 TgC yr—! and
Texas-Oklahoma-Kansas budget of 9.6 + 1.3 TgC yr~!. This test inversion produces emission
fields that bleed into sparsely populated areas adjacent to large source regions (e.g., surrounding
Texas and California). But modeled concentrations using this test emissions estimate are too high

within the free troposphere compared to aircraft data. As a result, we infer that an estimated US
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Figure A.6: A model-measurement comparison at several tower sites. The EDGAR v4.2 and posterior
model plots include the boundary condition, wetland contribution modeled from the Kaplan inventory,
and the anthropogenic contribution modeled from EDGAR and the posterior emissions, respectively.
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Figure A.7: A model-data comparison scatter plot for the posterior emissions estimate and EDGAR 4.2

budget from an inversion without aircraft data would likely be too high by 7-17%. The aircraft
data bound the vertical re-distribution of surface emissions. Without this bound, the inversion
may inaccurately estimate emissions that agree with surface methane measurement but never-
theless result in too much methane in the free troposphere and emission fields that spread too far

across the landscape.

A.45 Geographic coverage

Figure A.8 visualizes the average footprint (H) of the methane measurement network in 2007
and 2008. The figure confirms that the observation network is sensitive to emissions over much
of the central and western United States but insensitive to coal or urban-related emissions in
the mid and southern Atlantic states. In particular, the sparsity of observations near West Vir-
ginia and Pennsylvania inhibits a strong constraint on East Coast coal emissions. US EPA esti-
mates that coal constitutes 11% of all methane emissions, and approximately one third of all US
coal production is in Appalachia US EPA (2013); Young (2012). Consequently, we estimate that

a paucity of observations over Appalachia may contribute a 1 — 3% uncertainty in the total US
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Figure A.8: The footprint of the 2007-2008 methane observation network (i.e., H, averaged by row). Con-
tour lines represent the percentage of the summed observation network footprint that is encapsulated by
the given area. In other words, this figure illustrates the extent to which emissions in different locations
are “seen” by the observation network and provides a sense of the network’s ability to constrain sources
across different regions.

methane budget.

A.4.6 Comparison with the methane estimate from Katzenstein et al. (2003)

An steady increase in the number of US gas wells between 2001 and 2007-2008 may partially ex-
plain the differences between this study and Katzenstein et al. (2003). The total number of wells
in Texas, for example, increased by ~58% over this time period US Energy Information Adminis-
tration (2013).

Several aspects of our inverse modeling study also allow a more extensive picture of emis-
sions than available to previous studies. The NOAA /DOE observations from a diverse set of
measurement platforms characterize the atmospheric distribution of methane over a multi-year
period. We note that concentrations measured weekly at the NOAA Texas (WKT) tower from

2001 to 2003 average ~80ppb higher than ground-level observations near the WKT site during
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the Katzenstein et al. study Katzenstein et al. (2003). A stationary front on the Texas - Oklahoma
border and strong convection over Texas during the 5-day measurement period may have lofted
methane plumes higher into the troposphere, beyond detection at the surface. The WRF-STILT
model simulates the temporal and spatial variation in advection, convection, and boundary layer
dynamics, consistent with meteorological data. This detailed characterization of the atmosphere
accounts for methane plumes that are not uniformly mixed within the lower troposphere. Hence,
the comprehensive NOAA /DOE methane measurements and our GIM provide perspective on

national emissions and source sectors not possible in previous efforts.
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B

Supplemental material for chapter 4

B.1 Detailed model explanation and validation

B.1.1 Meteorology overview

The WRF meteorological simulations used in this study have been constructed explicitly for trace
gas modeling with STILT, and the same WREF fields have been used in a number of greenhouse
gas modeling studies (e.g., Kort et al., 2010; Gourdji et al., 2010; Huntzinger et al., 2011; Gourdji
et al., 2012; Miller et al., 2013, 2014c; Shiga etal, 2013). Among other features, these simulations
conserve mass by a factor of ten better than other meteorological products like the NCEP global
analysis fields (FNL) (Nehrkorn et al., 2010). Nehrkorn et al. (2010) and Hegarty et al. (2013) val-
idate the WREF fields generated for STILT against meteorological observations and controlled
tracer release experiments, respectively. The former study compares horizontal winds in WRF
against radiosondes: WRF exhibits a root mean squared error (RMSE) of 2.5 - 4 m/s with no
change in error statistics at the top of the planetary boundary layer. The latter study compares

the performance of several particle trajectory models, including STILT, coupled with a variety of
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Figure B.1: The 10-km and 40-km resolution domains used in the WRF model runs.

wind fields. WRF fields produce the best results among the examined wind fields when tested
against controlled tracer release experiments (Hegarty et al., 2013).

Section B.3 describes the land surface model used in WRE.

B.1.2 Nested meteorology setup

The WREF-fields used in this study are nested: 10-km resolution wind fields drive particle tra-
jectories over most of the continental US and much of Canada while 40-km wind fields drive
trajectories in more distant regions (Fig. B.1). This nested setup affords a detailed description

of winds within 24-48 hours of the measurement location, and the 40-km resolution at greater
distances allows substantial computational savings. This arrangement makes it computationally
feasible to run an ensemble of 500 back-trajectories for each of ~15,000 hourly methane mea-
surements. Nested WRF fields have been employed in a number of STILT modeling studies (e.g.
Zhao et al., 2009; Nehrkorn et al., 2010; Kort et al., 2010; Gourdji et al., 2010; Huntzinger et al.,
2011; Pillai et al., 2011; Gourdji et al., 2012; Jeong et al., 2012; McKain et al., 2012; Pillai et al.,
2012; Xiang et al., 2013b; Miller et al., 2013, 2014c; Hegarty et al., 2013; Newman et al., 2013; Shiga
etal., 2013).
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Figure B.2: A comparison of STILT trajectories run with nested-resolution WREF fields (odd rows of the
figure) and non-nested 40-km fields (even rows). Column (A) shows the trajectories associated with sin-
gle methane measurements at East Trout Lake, Saskatchewan, on Jan. 1, 2007, and at Fraserdale, Ontario,
on Jan. 21, 2007. Each ensemble of trajectories contains 500 particles that run backward in time along the
WREF wind fields. Column (B) displays the footprints associated with each set of trajectories (used to con-
struct H). Only particles within the mixed layer have a non-zero footprint, so the footprints have a less
dispersed spatial distribution compared to the trajectories. Column (C) plots dmass, a cumulative metric
of mass conservation (refer to section B.1.2). Panels show both the mean and distribution of dmass at each
time step. dmass values reach as high as 50 and as low as zero when STILT is paired with other meteoro-
logical products (section B.1.2).
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Figure B.3: This figure is identical to Fig. B.2 but compares trajectories from Chibougamau, Quebec, on

July 14, 2008.
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Figures B.2 and B.3 compare sample STILT trajectories created with the nested WREF fields
against trajectories created with the 40-km fields only. The examples in these figures span win-
ter to summer seasons and represent different synoptic transport patterns. Individual panels
display the back-trajectories (Figs. B.2a and B.3a), the influence footprints (used to construct
H, Figs. B.2b and B.3b), and a metric of mass conservation (dmass, Figs. B.2c and B.3c). For the
nested WREF setup, transport is continuous and smooth at the 10-km /40-km wind field bound-
aries. Furthermore, synoptic-scale transport patterns are consistent in nested and non-nested
model runs.

Both nested and non-nested WRF-STILT setups display favorable mass conservation statis-
tics. The dmass parameter (Figs. B.2c and B.3c) provides an estimate of cumulative mass creation
or loss in each back-trajectory. A value of one indicates perfect mass conservation while 0.5 in-
dicates 50% loss, and 1.5 indicates 50% mass gain (Nehrkorn et al., 2010). STILT uses the dmass
parameter to correct for mass violation in the footprints. In general, the 40-km wind fields pro-
duce less mass creation/loss compared to the 10-km wind fields. Hegarty et al. (2013) report that
the 10-km resolution fields nonetheless reproduce atmospheric transport better than coarser-
resolution winds. In the nested runs, mass conservation statistics are also continuous at the wind
field boundaries. In comparison, other meteorological products like EDAS-40 (Eta Data Assim-
ilation System) and FNL (Final) produce dmass values as high as 50 and as low as zero (Miller,
2007; Nehrkorn et al., 2010).

Note that we use nested wind fields exclusively for computing the back-trajectories. The Ka-
plan wetland flux model uses many inputs from WRF (e.g., soil moisture, soil temperature), and

these inputs are drawn exclusively from the 40-km fields.
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Figure B.4: Examples of the methane boundary condition (a) at 50°N and a variety of dates and altitudes
and (b) on August 1, 2008, and a variety of latitudes and altitudes. Note the different scales on each panel.

B.1.3 Boundary condition

WRF-STILT only models methane sources over the North American continent and therefore re-
quires a methane boundary condition (see sections 2.2 in the main article). The boundary condi-
tion represents the mixing ratio of methane in air masses before they reach the continent, from
both westerly and northerly synoptic air flow.

This study uses an empirical boundary that interpolates a variety of trace gas measurements
from ground-based sites and aircraft in the NOAA ESRL Global Monitoring Division’s Coop-
erative Global Air Sampling Network. The interpolated boundary curtain includes methane
measurements from Greenland, Alaska, California, Hawaii, and from ship tracks in the Pacific
Ocean, among other sites. The measurements are interpolated latitudinally and vertically using
the a curve-fitting procedure (Thoning et al., 1989). Fig. B.4 displays example cross-sections of
the boundary condition by date (Fig. B.4a) and latitude (Fig. B.4b).

The estimated boundary value associated with each trajectory run depends on the ending lati-
tudes, altitudes, and days of the trajectories.

For most model-data comparisons in the main article, we have subtracted the estimated bound-

ary value from the measurements to clearly depict the effect of North American methane sources
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on the measurement sites (e.g., Figs. 2 and 4 in the main article). The full mixing ratio measure-
ments show large seasonality (~40ppb) unrelated to emissions, due to changes northern hemi-
sphere hydroxyl radical concentrations. A time series plot of full mixing ratio measurements
would visually obscure the effect of North American methane fluxes on the measurements.
Existing studies validate this empirical boundary condition against methane data from air-
craft in the North American free troposphere. Miller et al. (2013) compare the boundary condi-
tion against NOAA aircraft data over the continental US (which, in some cases, were also used
to construct the boundary condition). They find that the boundary has small regional and/or
seasonal biases of 0.75 to 7ppb compared to this aircraft data. Miller et al. (2013) further adjust
the empirical boundary condition to remove these regional and / or seasonal biases compared to
aircraft data. However, regular methane data from aircraft are sparse over Canada, so it is not

feasible in this study to fit the methane boundary condition to regional free troposphere values.

B.1.4 Consistency between WRF-STILT and other atmospheric models

A number of existing STILT studies produce surface flux estimates that are comparable to stud-
ies with different transport models and / or meteorologies. These comparisons support model
transport as represented by WRE-STILT and suggest a lack of overall bias in the WRF-STILT foot-
prints (H). Miller et al. (2012b) use both WRF and the Regional Atmospheric Modeling System
(RAMS) with STILT to estimate US nitrous oxide emissions; the US budgets match within 12 +
6%. Furthermore, STILT studies of carbon monoxide and the present methane study both pro-
duce budgets comparable to top-down emissions estimates with the Geos-Chem model. Con-
straints on summertime US carbon monoxide emissions with RAMS-STILT and Geos-Chem
match to within 10% (Hudman et al., 2008; Miller et al., 2008), and methane budgets for the Hud-

son Bay Lowlands (HBL) in this study match Pickett-Heaps et al. (2011) to within ~5%.
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Figure B.5: This figure visualizes the sensitivity of the observations to emissions in different regions. The
contour lines indicate the regions that encompass 50, 75, and 90% of the total sensitivity or footprint of the
observations. In other words, the figure provides a measure of geographic coverage of the inversion.

B.1.5 Geographic coverage and data limitations

Fig. B.5 displays the summed footprints (H, units of mixing ratio per flux) for the two year (2007
2008) study period. The footprints indicate the sensitivity of the measurements to fluxes in dif-
ferent geographic regions. This figure displays the contour lines of the footprints: the regions
that encompass 50, 75, and 90% of the total sensitivity. The footprints show broad coverage
across Canada. Observations are particularly sensitive to fluxes in the Hudson Bay and Great
Lakes regions as well as fluxes in Saskatchewan and eastern Alberta.

Three additional Canadian measurement sites (Lac Labiche, Alberta; Egbert, Ontario; and
Sable Island, Nova Scotia) are excluded from the analysis. The Lac Labiche and Egbert sites lie
relatively close to the ground (10m and 6m ag]l, respectively) and are therefore particularly sen-

sitive to near-surface mixing or unresolved turbulent eddies. Sable Island lies far from methane
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sources and sees mostly marine background air.
Fig. B.5 indicates several gaps in the 2007-2008 observation network. The network has limited
coverage across Arctic Canada, in eastern Quebec and maritime Canada, and over the southern

half of Alberta.

B.2 Detailed statistical methodology

B.2.1 Covariance matrix structure and estimation

We estimate the parameters (6) that define the covariance matrices (R and Q) using a method
known as restricted maximum likelihood (REML). Maximum likelihood methods are standard
estimation tools for statistical parameters, including variances and covariances (e.g., Devore,
2012, ch. 6.2). Restricted Maximum Likelihood makes it possible to estimate the variance and /or
covariance when the mean, and any other drift coefficients (8), are unknown, by first removing
the effect of these unknown variables (Corbeil & Searle, 1976). REML has been used for covari-
ance parameter estimation in the solution of a variety of inverse problems (e.g., Kitanidis, 1995),
including the estimation of atmospheric trace gas sources and sinks (e.g., Michalak et al., 2004;
Gourdji et al., 2012).

REML will estimate the parameters (6) that are most likely given both the measurements (z)
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Figure B.6: Blue bars illustrate the mean methane signal from North American sources at each tower site
(z, the measured mixing ratio minus the boundary condition). The red bars depict the estimated model-
data mismatch errors (e.g., the square root of the diagonal of R). These errors encompass uncertainties
unrelated to the emissions (e.g., transport, methane boundary condition, etc.).

and atmospheric model (H) (e.g., Michalak et al., 2004):

Ly = _1n/ﬁ/sp(s,ﬁ,eyz,ﬂ)dsdﬁ

= 1In|W| + i In | X"H'W'HX| + 1"Ez (B.1)
where

W —HQHT +R (B.2)

E =w ! -y lpxX"H'w-1HX) " IXTHTw-! (B.3)

The best estimate of the covariance matrix parameters (6) is obtained by minimizing the nega-
tive log likelihood of the observations (Lg in Eq. B.1). This is equivalent to maximizing the prob-
ability p(s, B, 6|z, H) after integrating out the unknown fluxes (s) and coefficients (B).

For the inversion setup here, the model-mismatch covariance matrix (R) is diagonal. This
setup is consistent with a number of previous inversion studies that use tower-based trace gas

data (e.g., Zhao et al., 2009; Bergamaschi et al., 2010; Jeong et al., 2013; Gourdji et al., 2012). We
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use REML to estimate a different model-data mismatch variance (012{) for the eastern (LEF, CHM,
FSD) and western (CDL, ETL) tower sites. Furthermore, we model this variance to be constant
across all seasons. Fig. B.6 compares the estimated model-data mismatch values at each mea-
surement site against the average measured signal from North American sources (z).

The a priori covariance matrix (Q) describes the differences between the deterministic model
and the true fluxes. It requires a more complex structure for several reasons. First, the determin-
istic model may be a better (or worse) fit over wetland flux regions than in regions dominated by
anthropogenic emissions. Second, the deterministic model fits wetland fluxes in eastern Canada
better than in western Canada (see Fig. 4 in the main article). Finally, the deterministic model
may describe wetland fluxes more adeptly in some seasons than in others (e.g., Fig. 4 in the main
article). For these three reasons, the inversion problem requires a covariance function that is both
spatially and temporally non-stationary. To this end, we model the diagonal elements of Q, de-

noted O'é, as follows:

oo = a1 + ap[monthly Kaplan HBL budget] +

as[smooth functions over anthropogenic regions| (B.4)

where a1, @y, and a3 are constants estimated by REML. In other words, the covariance func-
tion has a component that is spatially and temporally constant (1), that varies seasonally with
the magnitude of wetland fluxes (a;[monthly Kaplan HBL budget]), and that varies spatially
(a3[smooth functions...]). Figure B.7 displays the annual mean ¢ as estimated by REML.

The covariances decay exponentially with distance:

Iy
Qij(hijlogi, 0gj, 1) = 0giogjexp <_l]> (B.5)
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Figure B.7: The estimated standard deviation of the difference between the deterministic model and the
true unknown fluxes (6¢). This is synonymous with the standard deviation of the stochastic component,

all fluxes not described by the deterministic model. We estimate these quantities using REML (section
B.2.1).

where £1;; is the great circle distance between locations i and j, [ is the decorrelation lengthscale,
and og; and o¢; are the standard deviations given in Eq. B.4 at locations 7 and ;.

REML estimates a total decorrelation length (3) of 381 + 36km. REML did not converge on
temporal decorrelation length, and we omit temporal correlations in Q.

In summary, we implement REML to estimate six parameters (0) that help define the covari-

ance matrices (R and Q): a1, an, a3, [, and two values of oy.

B.2.2 The Bayesian Information Criterion

This study uses the Bayesian Information Criterion (BIC) to select predictors for the determinis-
tic model. We calculate BIC scores using the following equations (as presented in Gourdji et al.,
2012):

BIC = In|W|+z'Ez+plnn (B.6)

The final BIC score for each candidate model is unit-less. This score increases with the mag-

nitude of the combined covariance matrices (W), with the weighted sum of squared residuals
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(zT2z), and with the complexity of the deterministic model (p Inn).

We add a further constraint that none of the environmental datasets in X can contribute nega-
tively to the methane fluxes. In other words, it would be illogical for either an anthropogenic or
wetland emissions model to have a net negative flux. Therefore, we check the estimated coeffi-

cients § on the selected model to ensure they are positive:

B = XTH'WIHX) XTHTw-!; (B.7)

This equation calculates the coefficients that are most likely given the atmospheric data z and H,

analogous to a weighted least squares regression.

B.2.3 Estimation of the posterior fluxes

A standard atmospheric inversion setup will minimize the cost function but is oblivious to any
known physical bounds on the emissions. However, large negative methane fluxes would be
unrealistic; methane has a small soil sink (~4% of the global sink), and only ~0.5% of the global
atmospheric methane loss occurs in boreal soils (Dutaur & Verchot, 2007). Hence, we assume
that all fluxes estimated by the inversion should be nonnegative. Of further concern, unrealistic
negative fluxes can exaggerate source strength in adjacent, high emissions regions (Miller et al.,
2014c). We implement nonnegativity in the inversion with Lagrange multipliers via an iterative
trust region algorithm. The companion paper Miller et al. (2014c) describes this approach in de-

tail.
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B.2.4 Uncertainties in the flux estimate

The posterior error covariance matrices provides a measure of uncertainty in both the estimated

fluxes (5) and coefficients (B) (e.g., Michalak et al., 2004):

-1
5| _ [QTTHRTH QX (B.8)
XTQ-! XTQ-1X
Michalak et al. (2004) and Miller et al. (2014c) discusses posterior covariances in greater detail,
and the former paper includes an alternative formulation of Eq. B.8 that does not require calcu-
lating the inverse of Q.

In this paper, we use the posterior covariance matrices to calculate all uncertainty estimates.
The variances and covariances of the estimated fluxes () account for uncertainties in the drift
coefficients and in the stochastic component of the emissions, and they account for uncertainty
due to randomly-distributed model-data mismatch errors. Note that the uncertainties listed for
the coefficients and posterior fluxes in this study are 20, unless otherwise noted.

Of note, existing statistical inversions cannot explicitly account for model-data mismatch er-
rors that produce overall bias (e.g., biased mixed layer heights or biased boundary condition
estimates). The consistency between STILT-based flux estimates and other model studies (Section
B.1.4) implies an absence of large or flagrant systematic errors in WRF-STILT.

Furthermore, the posterior covariances do not account for any uncertainty in the choice of co-
variates for the deterministic model. If there were many plausible candidate models for X, all
with similar BIC scores, this could be an important component of the uncertainty in the flux es-
timate. In this study, most candidate models have BIC scores that are more than 10 points above
the optimal model. This indicates a ‘very strong’ level of evidence against those models (see sec-

tion 3.2.2 in the main article and Kass & Raftery (1995)). A notable exception is the decision to
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Figure B.8: (a) Uncertainty in the posterior estimate (0;). (b) The reduction in uncertainty relative to the

prior estimate (6 — 0;). Note that these uncertainties decrease over increasing spatial scales. Mathemati-
cally, this decrease is due to negative covariances in the posterior covariance matrix.

exclude soil carbon from the deterministic model. The evidence against including soil carbon is
‘positive’ but not ‘strong’ or ‘very strong.” In other words, the possibility of including soil car-
bon within X and its effect on the final flux estimate () is a source of uncertainty not explicitly
reflected in the posterior covariance matrices. The choice of covariate over Alberta represents
an additional possible uncertainty. We use a set of smooth functions to describe anthropogenic
emissions over Alberta (Section B.4). We could not find a spatial pattern that fit the atmospheric
methane data more adeptly. However, a better spatial predictor of Alberta emissions could exist.
Figure B.8a displays a map of the posterior uncertainty, denoted o;, and Fig. B.8b displays the
corresponding decline from the prior uncertainties. It is important to note that the posterior un-

certainties often decrease exponentially at increasing spatial scales (e.g. Miller et al., 2013). This
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decrease occurs because of negative posterior covariances among emissions points distributed
geographically. In other words, the atmospheric data data may provide a weak constraint on the
exact distribution of emissions between any two adjacent grid boxes. However, the data may
nonetheless constrain regional and national methane budgets with high relative confidence. For
example, the uncertainties in Fig. B.8a relative to the flux estimate can be 100%, but the relative
uncertainty in the total Canadian methane budget (Fig. 7 of the main article) is far smaller.

The posterior uncertainties indicate key information about methane emissions in Alberta.
These uncertainties at grid-scale are comparable to the magnitude of emissions. This result in-
dicates that the precise spatial distribution of the posterior emissions over Alberta is highly un-
certain. The inversion places large emissions in Northern Alberta and near the Rocky Mountain
Front Range, but this assignment is poorly constrained by the available methane data. As ex-
plained above, the atmospheric methane data better constrain regional-scale totals. For example,
the inversion estimates a budget for western Canada of 11.3 + 2.4 (west of -100° lon.). The uncer-
tainties in this regional-scale total are small relative to uncertainties at grid-scale.

The spatial distribution of emissions over Alberta remains an important, open question. Two
efforts, in particular, could reduce these uncertainties in future estimates. First, expansion of
the Environment Canada measurement network will provide stronger constraints on both the
magnitude and spatial distribution of emissions. The 2014 network includes methane measure-
ments at Abbotsford, British Columbia; Esther, Alberta; Fort McKay, Alberta, and Bratt’s Lake,
Saskatchewan (in addition to the sites used in this study). Second, top-down emissions estimates
would benefit from accurate, detailed maps of spatial processes related to methane emissions.
These maps could be used to construct a more capable deterministic model. The better the deter-
ministic model describes the atmospheric methane measurements, the smaller the variance of the

stochastic component, and the smaller the posterior variances and uncertainties.
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Figure B.9: Environmental datasets tested for the deterministic model (Table 1 in the main article). NARR
and WREF plots are annual averages.

B.3 Detailed comparison of biogeochemical model drivers

This section provides visual comparison of the wetland-related environmental datasets that are

used in Kaplan, DLEM, and the deterministic model.

Figure B.9 compares all of the wetland-related variables that are listed in Table 1 of the main

article. The top panels display soil moisture and temperature estimates from WRF and NARR.

These meteorologies are similar for two reasons; NARR serves as the initial condition for the

WREF runs, and both NARR and WRF use the Noah land surface model. The Noah model is de-
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Figure B.10: Soil variables from NARR for selected months of the year (averaged over 2007 — 2008).

scribed in a multitude of publications, and a list of relevant references is available in Ek et al.
(2003) and Niu et al. (2011). Fig. B.10 further illustrates the soil variables by season, in this case
for NARR. Total soil moisture peaks in spring and declines into the summer. Temporal patterns
in unfrozen soil moisture, by contrast, are dominated by the seasonal freeze-thaw cycle.

It is important to note that the NARR and WRF outputs used here are constrained by meteo-
rological observations. For example, the NARR model-data assimilation framework adjusts land
surface model output at each time step to match available meteorological observations, includ-
ing temperature and precipitation. Mesinger et al. (2006) provide a succinct overview of NARR
and visually compare precipitation measurements against NARR estimates. The WRF runs, in
contrast, are re-initiated at regular intervals with initial conditions from NARR. The WRF runs
do not assimilate meteorological observations directly, but this setup ensures that the WRF runs
cannot stray far from the available meteorological data.

Subsequent panels of Fig. B.9 display the wetland and soil carbon estimates. Wetland esti-

mates include output from the LP] model and GIEMS. GIEMS is a monthly-resolution satellite
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product that estimates global surface water (Prigent et al., 2007; Papa et al., 2010). In this study,
we use long term, summer-averaged surface water from GIEMS as a wetland proxy (1993-2007,
averaged over July-September). As discussed in Melton et al. (2013b), surface water may not
necessarily be an ideal proxy for wetlands. Among other issues, this proxy would underestimate
wetlands that hold the majority of water in the subsurface. For this and other possible reasons,
GIEMS and the LPJ] model have different spatial distributions. For example, GIEMS estimates
high surface water over northern Quebec while the LPJ wetland estimate is largely restricted to
the HBL and Great Slave Lake regions.

The bottom panels of Fig. B.9 visualize the soil carbon estimates, and these estimates exhibit
very different spatial distributions. The LPJ soil carbon estimate correlates closely with latitude.
Note that this estimate is multiplied by a factor of 4.15 before it is used in the Kaplan model in
order to match the LPJ inputs used in Pickett-Heaps et al. (2011) (refer to section 2.4.1 of the main
article). The NCSCD soil carbon estimate (Tarnocai et al., 2009; Hugelius et al., 2013), in contrast,
has a spatial distribution more similar to the LPJ] wetland estimate. NCSCD notably only esti-
mates soil carbon in permafrost regions.

The deterministic model, described in the main article (section 4.2), excludes any estimate of
soil carbon. This feature may be reconcilable with existing methane models. One might expect
wetland location to correlate with soil carbon, so both environmental datasets may not be strictly
necessary in a wetland flux model. In the Northern Circumpolar Carbon Database (Tarnocai
et al.,, 2009), for example, wet peatland soils (histels and histosols) have the highest carbon den-
sity of any soil type by a factor of 2 — 20. Other environmental factors may complicate this cor-
relation between the wetland distribution and soil carbon; both the type of plant carbon and age
since deposition can affect the rate of methane production (Chanton et al., 2008; Bridgham et al.,
2013). However, existing soil carbon datasets disagree even on the continental-scale distribution

of soil carbon, so it is doubtful that an existing dataset would capture more subtle features or ef-
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Figure B.11: The EDGAR v4.2 anthropogenic methane emissions inventory.

fects. Furthermore, several chamber studies argue that methane fluxes correlate more strongly

with other environmental factors than with soil carbon (Prater et al., 2007; Olefeldt et al., 2013).

B.4 Anthropogenic methane estimates

Figure B.11 displays the EDGAR version 4.2 inventory over Canada. In the figure, the inventory
is regridded to a 1° lat. by 1° lon. resolution for easier visual comparison with the inversion re-
sults in this study.

We use an alternative formulation of anthropogenic sources in the deterministic model. Specif-

ically, we place smooth tricube functions over anthropogenic source regions (Fig B.12):

fidr) = (1— (d)3)3 (B.9)

di = \/ (latitude; — latitude,)? + (longitude; — longitude_)? (B.10)

where f() is the tricube function. d; is the latitude-longitude distance between location i and the
center ¢ of the function. Both the function center (c) and radius (r) are defined by the modeler.

We define the distance d; in terms of latitude and longitude instead of great circle distance in
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Figure B.12: The set of smooth, tri-cube functions used as a component of the deterministic model (XB).
In this plot, the functions are scaled by a coefficient estimated from the atmospheric methane data (ﬁl,
section 4.2 of the main article). Note that the Canadian observation network is not sensitive to methane
emissions over most of the continental US (e.g., Fig. B.5). Instead, refer to Kort et al. (2008, 2010) or Miller
et al. (2013) for top-down analysis of US methane emissions.

order to better fit the shape of anthropogenic source regions. Most large anthropogenic source
regions in North America span longer north-south distances than east-west (e.g., the US Eastern
Seaboard, California Central Valley, and resource extraction regions of Alberta). To this end, Eq.
B.10 approximates anthropogenic source regions over North America with an ellipse that has
been elongated in the north-south direction.

We test multiple tricube functions with different centers (c) and radii (r) and choose the combi-
nation of functions that produce the lowest BIC score. The functions chosen for use in the deter-
ministic model are centered over Alberta (52° lat., -115° lon.), the southern Great Plains (35° lat.,

-100° lon.), the US East Coast (38° lat., -78° lon.), and California (35° lat., -122° lon.) (Fig. B.12).

B.5 Comparison with previous observational studies

The HBL methane budget estimated in this paper is higher than two previous observational
studies: Roulet et al. (1992) and Worthy et al. (2000). Several factors may explain this difference.

Roulet et al. (1992) extrapolated a flux estimate using ground-based measurement sites at the
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north and south ends of the HBL. The authors may have missed larger emissions in the central
HBL, leading to a possible underestimate for the region. This point is also discussed in Pickett-
Heaps et al. (2011). Worthy et al. (2000) used Fraserdale (FSD) observations and a box model
with spatially-uniform flux to estimate an HBL budget. Their budget estimated using atmo-
spheric data depends on the presumed distribution of the fluxes. For example, a modest source
near the tower site or a much larger source in more distant regions could produce similar mod-
eled concentrations at Fraserdale. Our study overcomes this distributional challenge by using
multiple tower sites and by leveraging existing environmental datasets relevant to the distribu-

tion of wetland fluxes.
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C

Supplemental material for chapter 5

This supplement provides more detail on the atmospheric observations, the wetland methane

flux estimates, and the statistical methods used throughout the paper.

C.1 Atmospheric observation sites

Here we describe, in greater depth, the atmospheric methane observations collected across the
US and Canada in 2007-2008. The methane analysis in the main article leverages 14,703 total
methane observations. Of those measurements, 2,009 are from observation towers in Canada.
These towers (from east to west) include Chibougamau, Quebec (CHM, 50°N, 74°W, 30m above
ground level); Fraserdale, Ontario (FSD, 50°N, 83°W, 40m agl); East Trout Lake, Saskatchewan
(ETL, 54°N, 104°W, 105m agl); and Candle Lake, Saskatchewan (CDL, 54°N, 105°W, 30m ag],
2007 only). These sites, operated by Environment Canada, measure methane continuously. In
this study, as in Miller et al. (2014c), we use only afternoon averages of the methane data and
WRF-STILT model output (1pm - 7pm local time); small scale heterogeneities in the continuous

data caused by turbulent eddies and incomplete mixing make it difficult to model finer scale
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temporal patterns in the data. The 2,009 observations at these Canadian sites represent the total
after averaging.

An additional 4,984 methane observations were collected from National Oceanic and Atmo-
spheric Administration (NOAA) towers across the United States. These observations include
daily flask samples from the NOAA tall tower network (weekly at Argyle and Ponca City): Ar-
gyle, Maine (AMT, 45 °N, 69 °W, 107m above ground level (agl)); Erie, Colorado (BAO, 40 °N,
105°W, 300m agl); Park Falls, Wisconsin (LEF, 46°N, 90°W, 244m agl), Martha’s Vineyard, Mas-
sachusetts (MVY, 41°N, 71°W, 12m agl); Niwot Ridge and Niwot Forest, Colorado (NWF, NWR,
40°N, 105°W, 2,3,23m agl); Ponca City, Oklahoma (SGP, 37°N, 97°W, 60m agl); West Branch,
Iowa (WBI, 42°N, 93°W, 379m agl); Walnut Grove, California (WGC, 38°N, 121°W, 91m agl), and
Moody, Texas (WKT, 31°N, 97°W, 122, 457m agl).

A further 7710 methane measurements were obtained from flask samples on regular NOAA
aircraft flights and from the STARTO08 (Stratosphere-Troposphere Analyses of Regional Transport
2008) measurement campaign (Pan et al., 2010). As in Miller et al. (2013), we only use aircraft
observations up to 2500m above ground level. Observations at higher altitudes are less sensi-
tive to surface emissions and were instead used by Miller et al. (2013) to optimize the empirical
methane boundary condition. In this study, we only use aircraft and tower-based observations
collected during daytime hours.

We further screen the data for biomass burning influence at the Canadian sites and at Park
Falls, Wisconsin. At the these sites, we remove all days with CO that peaks above 200 ppb, as
was done in Miller et al. (2014c). When these sites see influence from distant anthropogenic
emissions, CO is often elevated, but it rarely exceeds 200 ppb except during time periods with

known fires (Miller et al., 2008).
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C.2 WETCHIMP methane flux models

This section of the supplement details the WETCHIMP methane estimates from Melton et al.
(2013a) and Wania et al. (2013). The seven methane estimates used in this study are shown in Fig.
C.1. The wetland methane fluxes estimated by these models varies widely — both in magnitude
and in spatial distribution. For example, the SDGVM model places large fluxes over the US Corn
Belt relative to other regions while other models like Orchidee place large fluxes in Northern
Canada that extent far into the Northwest Territories. For a more in-depth inter-comparison of

these flux estimates, refer to Melton et al. (2013a) and Wania et al. (2013).

C.3 The synthetic data

In the main article, we use synthetic atmospheric methane data to explore the sensitivity of at-
mospheric observations to wetland fluxes (sections 5.2.3 and 5.3). This section describes in greater
detail how we construct this synthetic data. The synthetic observations include contributions
from anthropogenic sources, from wetlands, and from simulated model and measurement er-

rors:

Zsynthetic = H(Santhro + Swetland) + € (C.1)

In this equation, Zenhetic (n X 1) represents the synthetic observations generated for an observa-
tion site. The vector s,y (M X 1) represents emissions from anthropogenic sources and Syetiand
(m x 1) represents wetland fluxes. The footprint or sensitivity matrix H (n x m), generated from
WRF-STILT, models the impact of these emissions at the observation sites.

In this study, we use the a priori anthropogenic emissions estimates from Miller et al. (2013)
and Miller et al. (2014c) for s,,nro- Those studies used activity data from the EDGAR inventory

and a model selection framework to construct a prior anthropogenic emissions estimate. These
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Figure C.1: Annual mean wetland methane fluxes from seven different WETCHIMP estimates (Melton

et al., 2013a; Wania et al., 2013). The fluxes shown here are averaged over the 1993-2004 study period.
Note that the fluxes shown above are averaged over the entire grid cell, not per m? of wetlands.
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EDGAR activity datasets include economic or demographic data that may predict the spatial
distribution of methane emissions (e.g., human or ruminant population maps).

The wetland fluxes (Syetland) in Eq. C.1 are taken from the WETCHIMP methane flux mod-
els (experiment two in Melton et al. (2013a)). We use only four of the seven WETCHIMP mod-
els to generate synthetic data: CLM4Me, DLEM, LPJ-WSL, and SDGVM. These models have
an overall magnitude that most closely matches the methane budgets estimated by three recent
top-down studies over Canada’s Hudson Bay Lowlands (Pickett-Heaps et al., 2011; Miller et al.,
2014c; Wecht et al., 2014). The magnitude of these four models is likely the most realistic among
the WETCHIMP flux estimates. The other WETCHIMP models, in contrast, predict much higher
fluxes (Fig. 7.3).

As in Miller et al. (2013) and Miller et al. (2014c), the emissions (Synro and Syetiand) are regrid-
ded to a spatial resolution of 1° latitude by 1° longitude. The EDGAR activity data do not have
any seasonality, so the anthropogenic emissions (s ) are seasonally invariant. The WETCHIMP
models have a monthly temporal resolution, as in Melton et al. (2013a). That study provides
flux estimates for the years 1993-2004; we use the mean of these ten years for all analysis in this
study.

The final term in equation C.1, € (n x 1), represents simulated errors in the measurements, in
WREF-STILT, and in the fluxes (S nthro aNd Syetland)- The magnitude and spatial / temporal struc-
ture of these errors were estimated in Miller et al. (2013) for the US and Miller et al. (2014c) for
Canada. The remainder of this section details the specific calculations for simulating ¢.

The errors in ¢ are distributed according to the covariance matrix W (n x n) (Eq. 5.1):

¢ ~N(0,W) (C2)

W = HQH' +R (C3)
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The variances and covariances within W fall into two different categories. The first category
are errors due to imperfect emissions, described by covariance matrix Q (m x m). In atmospheric
inversion studies, this matrix is typically termed the a priori covariance matrix. The diagonal
elements of Q describe a set of variances — differences between the prior and the unknown true
emissions over long spatial or temporal scales. The off-diagonal elements of Q describe any spa-
tial and / or temporal covariances in these differences. In Eq. C.3, the footprint or sensitivity ma-
trix (H) projects Q from units of (flux)? into units of parts per billion squared, (ppb)?.

We refer to the second type of errors as model-data mismatch errors, denoted by covariance
matrix R (n x n). These include all errors in the WRF-STILT model or the measurements that
are unrelated to an imperfect flux estimate. Examples of model-data mismatch errors include
measurement error, atmospheric transport error, or errors due to the spatial or temporal reso-
lution of WRF-STILT. Over the United States, we use values for R and Q that were estimated by
Miller et al. (2013) using WRF-STILT and the same atmospheric methane observations used in
this study. Similarly, we use values for R and Q over Canada that were estimated in Miller et al.
(2014c), a parallel inverse modeling study over that country.

In order to simulate ¢, we next compute the Cholesky decomposition of W:

v = cC’ (C.4)

The covariance matrix W has units of (ppb)?, but its Cholesky decomposition (C) has units of
ppb, a fact that will become useful in the next step. With this decomposition in hand, we simu-

late a set of errors, ¢ (e.g., Fang et al., 2014; Shiga et al., 2014):

e =Cu (C.5)

u ~N(©0,1) (C.6)
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where u represents a set of randomly-generated numbers with a mean of zero and variance of
one.

We simulate 1000 synthetic datasets for each experiment to adequately sample the random
errors in e. We then use the model selection framework to find the optimal candidate model for
each of these datasets. The results presented in Fig. 5.3 are therefore the composite of thousands
of model selection runs: one model selection run for each synthetic dataset. We use a branch and
bound algorithm from Yadav et al. (2013) to improve the computational efficiency of these model
selection runs. Furthermore, we estimate the coefficients (8) in Eq. 5.1 using Lagrange multipli-
ers to ensure that none of the estimated coefficients have unrealistic negative values (e.g., Miller

et al,, 2014a).

C.4 Sensitivity of the observation network to surface fluxes

In this section, we describe the overall sensitivity of the observation network to methane fluxes.
This sensitivity will play at least some role in network’s ability to identify a signal from wet-
lands. The WRF-STILT model quantifies this sensitivity in terms of a footprint. Each row the
matrix H is the footprint associated with a different atmospheric methane observation. In Fig.
C.2, we plot these footprints, summed over all of 2007-2008.

This figure show several distinctive patterns. First, the US network has a higher sensitivity
than the Canadian network. This pattern is due to the larger number of observation sites over
the US. Second, the highest sensitivities are clustered in distinctive regions with multiple obser-

vation sites — Wisconsin, Texas/Oklahoma, and California, among other regions.
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Figure C.2: Total, summed footprint from the (a) Canadian and (b) US observation networks. The obser-
vation sites incorporated into this figure are shown in Fig. 5.2. Each individual footprint (associated with
an individual atmospheric observation) has units of concentration per unit flux (ppb per pmol m=2 s71).
In this figure, we sum all footprints for 2007-2008.
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Figure C.3: This figure displays the fraction of soil water that is unfrozen for the HBL in different seasons
and at different soil depths. Estimates are taken from NARR (Mesinger et al., 2006).

C.5 Soil freeze/thaw estimates from NARR

Figure C.3 shows the soil freeze/thaw cycle at different depths across the Hudson Bay Lowland.
These estimates are taken from North American Regional Reanalysis (NARR) (Mesinger et al.,
2006), and the values shown in Fig. C.3 are average values for the HBL in each month. The main

article references this figure in a discussion of the methane flux seasonal cycle (Sect. 5.4.3).
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D

Supplemental material for chapter 6

This supplement describes in greater detail the multiple-try Metropolis-Hastings algorithm and

the Gibbs sampler implementation.

D.1 Existing Metropolis-Hastings implementations

Metropolis-Hastings algorithms can be used in a number of ways to enforce inequality con-
straints, and existing literature in hydrology (Michalak et al., 2004; Wang & Zabaras, 2006; Zanini
& Kitanidis, 2009) and atmospheric sciences (Rigby et al., 2011; Burrows et al., 2013) implement
different approaches. The algorithms implemented in the cited hydrology papers use Lagrange
multipliers to enforce constraints on individual realizations. Such an approach is computation-
ally attractive for larger-scale inverse problems, with hundreds or thousands of elements of the
state space for which constraints must be enforced. The cited studies generally use the following

approach:

1. Add noise to the observations and the prior. The vectors of random noise are generated

using the covariance matrices (R and Q, respectively) and the last accepted realization.
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2. Create a conditional, constrained realization of the emissions (s.,;) by minimizing the in-
version cost function subject to the randomly-generated inputs above and enforcing con-

straints on the state vector using the method of Lagrange multipliers.

3. Calculate the likelihood of the candidate realization (s, ;) relative to the previous, accepted
realization (s..j—1). Based upon this likelihood, either accept or reject the realization, and

begin again with step 1.

These steps are described in more detail in section D.2.

The cited existing atmospheric studies use a different approach (Rigby et al., 2011; Burrows
et al.,, 2013). In these studies, a new realization (SCCJ‘) is generated by adding a random quantity
directly to the previous candidate realization (s.,;j—1). If the candidate realization (s ;) does not
obey the inequality constraints, it is discarded. If the constraints are met in the realization, it is
again accepted or rejected based on its relative probability compared to the last accepted realiza-
tion. This implementation omits steps 1 and 2 above. In other words, the modeler is not required
to minimize the cost function and can instead skip directly to step 3. This feature affords greater
flexibility in the inversion setup (e.g., Rigby et al., 2011); the modeler can use a complex probabil-
ity density function (pdf) for the inversion even if calculating its maximum is computationally-
intractable. A larger number of multivariate distributions could be used for the prior pdf, not
just a multivariate Gaussian distribution (implemented with Lagrange multipliers in the hydrol-
ogy studies above). The fraction of realizations that are rejected, however, can be very high for
two reasons. First, for large state vectors, a very high fraction of candidate realizations will not
obey all bounds and will be rejected. Second, there are no formal steps to ensure that each pro-
posed realization reproduces the atmospheric observations. Therefore, the fraction of realiza-
tions that are rejected will be high, even among those realizations that obey the inequality con-

straints.
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The implementation used in the cited hydrology studies is therefore better for larger prob-
lems because it samples the posterior probability space more strategically. The implementa-
tion generates candidate realizations that explicitly sample the covariance matrices (R and Q)
and honor the observations (z). Refer to Chib & Greenberg (1995) or Bolstad (2012) for a gen-
eral discussion on creating candidate realizations. In general, larger problems require strategic
generation of candidate realizations; the efficiency and /or acceptance probability of Metropolis-
Hastings decreases as the number of unknowns increase for problems with comparable imple-
mentation and covariance matrices (Gelman, 2004, ch. 11). This fact makes the approach used
in the cited hydrology literature more suitable for larger problems like the methane case study
in the main manuscript. However, this approach also restricts the inversion setup to pdfs with

computationally-tractable maxima.

D.2  The multiple-try Metropolis-Hastings

The following section describes the multiple-try Metropolis-Hastings algorithm modified to ac-
commodate inequality constraints. This algorithm is more computationally tractable for large
problems than many traditional Metropolis-Hastings implementations.

This algorithm (Liu et al., 2000) first requires the generation of an unconstrained unconditional
realization, denoted s,,. The realization for step j, denoted s, ;, is created by applying a mod-
ification to s, ;1. The modification to the previous realization is provided by what is known
as the jumping distribution T(). This distribution should create new realizations that are suf-
ficiently different from the previous one such that the algorithm effectively samples the entire
probability space. However, the jumping distribution should avoid creating subsequent realiza-
tions that are so different such that s, ; gets rejected by the algorithm (e.g., Chib & Greenberg,
1995).
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The jumping distribution used here requires taking the Cholesky decomposition of Q:

Q=cc’ (D.1)

The distribution T() can be chosen in any number of ways (e.g., Chib & Greenberg, 1995), but

we generate new unconditional unconstrained realizations as follows (where u is a random vec-

tor with distribution A/(0,1)):

Suu,0 = Cu (D.2)

Suu,j = (Z)Suu,jfl + \/ 1- (PZ Cu

In this case, we set ¢ = 0.9, though any value greater than zero and less than one is acceptable

(e.g., Michalak et al., 2004). The multiple-try Metropolis-Hasting with inequality constraints has
the following steps:

1. Draw k trial proposals for s, ; from the jumping distribution described by Eq. D.2.

2. Compute a conditional constrained realization (s ;) for each of the trial proposals by mini-

mizing the posterior negative log-likelihood via Lagrange multipliers:

Lsp = 3(z+0—Hs, )'R(z+0v—Hs, )+ (D.3)

cc,j

1 T
E(S:c,j - Srtu,j) G(S:c,j - SZu,j)

where v is a random vector with covariance R. In this case, the asterisk () indicates that

the candidate is one of k trial proposals for the realization.
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3. Compute the weighting function for each trial proposal:

p" (st jlz. H, X)

W(S:C,j’SCC,j—l) T( ‘ ch 1) (D.4)
ce,jloce,)—

where p”(s*

cc 7j

|z, H, X) indicates the posterior probability of Sty and T(sjc7j|scc7]-,1) is the
jumping probability of 57 ; given s 1. The posterior probability and approximate jump-

ing probability can be calculated as follows (Michalak et al., 2004):

p" (st 1z, H, X) o exp[—3(z HSCC]) R! (z — Hs7, ;) (D.5)
-3 :C,]TGSCC,]]
T(S:c,j‘scc,]'*l) X exp[—%( uu,] (Psuu,j*l)T (D6)
Q 1

(1 _¢ )( uu,j (P un,j— 1)]
4. Select s . ; from the trial proposals by individually, randomly drawing each element from
Secj with probability proportional to the weighting function w(s}. jlSccj—1)- Select the corre-

sponding elements of s* j to construct s, ;.

5. Create (k—1) new trial proposals for s..;_1. To do this, draw samples from the jumping dis-
tribution T(s;:u’]-fl]suu,j) (i.e., sfmﬁl = ¢suuj + \/1— qbZCu). Calculate the trial conditional
constrained realizations st ;_; using the procedure outlined in step 2. Set trail proposal k
to S.j—1. Finally, calculate the weighting function for each trial conditional constrained

realization, w(sjw-_l |Scc.j)-
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6. Calculate the acceptance/rejection probability (Liu et al., 2000):

k * .
£ = min {1, 2 0(SeelSecj-1) } (D.7)

k
w(S:c7]'_1 ‘Scc,j)

Accept s ; if & > U(0,1). Otherwise, set s..; = s5ccj_1.

Repeat steps 1 — 6 until a sufficient number of realizations have been generated to sample
across the entire posterior probability space. Note that unlike the Gibbs sampler, this multiple-
try Metropolis-Hastings algorithm does not require discarding realizations from an initial spin-
up period. For this application, we choose k = 8. Larger values for k can lead to greater accep-
tance rates but higher computational cost. Liu et al. (2000) note that an acceptance rate of 0.4—0.5

is ideal for a multiple-try Metropolis-Hastings algorithm.

D.3 The Gibbs sampler implementation

The Gibbs sampler requires generating the element-wise conditional probability density, the
probability of any individual element in s given an estimate of all other elements in s. This con-
ditional density is denoted p(s;|s, z) where i is one of m elements in s. The equations for p(s;s, z)
can be found in Michalak (2008) for the inversion setup discussed in this paper.

The Gibbs sampler has the following steps:
1. Make an initial guess for s; where the subscript ‘1" denotes the first realization of s.

2. Obtain a new realization, Sis from the previous realization, Sj—1- To do this, successively

generate a conditional probability for each element in s, and draw a random sample from
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each one:

p(s1;) = p(s1ls2,j—1, s Smj-1)

p(SZ,‘) = p(52,4|sl,‘a 53,‘717 wy S ,‘71)
] J1= 1) ] m,j (DS)

p(8ij) = P(Sijl81js s 8i-1,j>Si41,j—1, -+ Sm,j—1)

PBmj) = PSmjlstjs - Sm-1;)

3. Update jtoj+ 1 and continue generating realizations.

Create a large number of realizations (in this case 1200) to fully sample across the posterior
probability space. The initial realizations are usually discarded as a “spin-up” period (in this
case, the first 200).

In this implementation p(s;|s, z) is Gaussian. To enforce the inequality constraints, Michalak
(2008) draws a random sample from p(s;|s, z) until the random draw falls within the bounds.
This draw becomes the estimate for s; ;. The approach is equivalent to using a truncated Gaus-
sian as a the prior probability density function, but this implementation avoids the computa-
tional challenge of directly computing a multivariate, truncated probability distribution.

This study uses a modified approach for the methane case study. If the random sample from
p(sils, z) is positive, it becomes the estimate for s; ;. If the random sample is negative, set s;; = 0.
This approach is equivalent to sampling from a truncated normal distribution with an added
Dirac delta function. The method adapted here increases the probability of estimating zero emis-

sions for a given flux or emissions location.
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E

Supplemental material for chapter 7

E.1 The meteorological model-data assimilation framework

This section of the supplement describes the Local Ensemble Kalman Filter (LETKF) in greater
detail. Many of the equations listed below are abbreviated versions of those detailed in Hunt
et al. (2004), Desroziers et al. (2005), Hunt et al. (2007), Li et al. (2009), and Miyoshi (2011). For a
mathematical derivation of either the meteorology optimization or covariance matrix estimation
within LETKE, refer to any of those studies.

The model-data assimilation system (abbreviated CAM-LETKF) can be summarized in a
number of steps. First, we create an initial condition for modeled meteorology, in this case us-
ing NCEP-DOE AMIP-II reanalysis (Kanamitsu et al., 2002). We generate a set of small pertur-
bations to the initial conditions and use these perturbations to create a set of k initial conditions
that are all slightly different. In this case, we set k = 64 (as in Liu et al., 2011, 2012). This choice
represents a compromise between thorough statistical sampling and computational considera-

tions: a very large k will exhaustively sample the model uncertainties. However, k CAM-CLM
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realizations require 4k computer cores, so a very large k would also become computationally pro-
hibitive.

Second, we run a 6-hour weather forecast using CAM-CLM for each of the k model initial con-
ditions. The spread of this model ensemble represents our prior uncertainty in the modeled me-
teorology:

x; = x+X; wherei=1....k (E.1)

where x; (m x 1) is a single model realization, X (m x 1) is the mean of the model ensemble, and X;
(m x k) refers to the ith column of the matrix that defines the model ensemble spread. In the main
article (e.g., Eq. 1), we defined these variables to refer to all model time steps, collectively. In the
supplement, by contrast, we will instead define these variables to refer to the model-data assimi-
lation at a single, 6 hourly time step. In other words, m and n now refer to the model outputs and
number of weather observations, respectively, associated with a single model-data assimilation
cycle. This redefinition of the variables facilitates a discussion of time-stepping in the remainder
of this section.
Third, we calculate a set of k weights such that the weighted average of the realizations best

matches the meteorological observations:
¥ = %+ X (E.2)

The superscript b refers to the model state before assimilation and 4 the model state after data as-
similation. The k x 1 vector of weights (@) are estimated by minimizing a statistical cost function

with respect to the meteorological observations (Hunt et al., 2007):

]m)=M—wa+@—m#+ﬂmfR4@—m#+ﬁm) (E3)
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In the above equation, z (n x 1) represents the meteorological observations, and H() is a function
or operator that maps the model output to the observations. For example, the function H() may
convert the model units to the measurement units or may interpolate the model output to an
observation site that lies between multiple model grid boxes. Lastly, the diagonal matrix R (1 x n)
represents the nugget variance, variance in the model-data residuals that is due to measurement
errors or meteorological processes too small in scale to be captured by CAM-CLM.
The following equation further elucidates the role of the R covariance matrix in the analysis

(e.g., Hunt et al., 2007):

z = H(x) + N(0,R) (E.4)

In the above equation, x refers to the true value of the meteorological parameters averaged to
the resolution of the model grid. This vector is an unknown quantity, and the estimated values
(X7) are only a best guess of this unknown quantity. Any differences between the true, unknown
values and the measurements must be due to one of two causes: either measurement error or
errors due to the finite model resolution. These errors should follow a normal distribution with
a mean of zero and a covariance matrix R. We estimate the elements of this matrix using actual
model-data residuals, as described in greater detail below.

In order to estimate the weights (w), we use a localization procedure. In practice, we never
compute the weights simultaneously for the entire global model output. Rather, we estimate a
different set of weights for each model grid box using model-measurement pairs within a certain
radius (in this case, within 1500km). As such, the matrices in Eqs. E.2 and E.3 represent a subset
of the global model output, and the dimensions n and m are small relative to the total number of
global observations and model grid boxes, respectively.

As part of this localization procedure, we interpolate the gridded model output to the ob-

servation locations and times; we use these model-measurement pairs to compute each set of
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weights. We further taper the influence of model-observation pairs on the optimization depend-
ing on their distance from the grid box in question (using a Blackman window function as de-
scribed by Oppenheim & Schafer (1989) and Liu et al. (2012)). Hence, model-measurement pairs
located within the model grid box of interest will influence the optimization much more strongly
than model-observation pairs located 1000km away. A radius of 1500km for the Blackman win-
dow function is comparable to values used throughout the meteorological literature. For exam-
ple, Liu et al. (2011) and Liu et al. (2012) also used a 1500km radius. Furthermore, Miyoshi (2011)
set a 1825 km radius of influence, Miyoshi & Kunii (2012) used a 1460km radius, and Szunyogh
et al. (2008) used an 800km radius.

This localization approach ensures coherence among adjacent grid boxes and ensures that
the optimization is not an over-fit to the data. For example, if we estimated the weights using
only model-measurement pairs in the grid box of interest, several problems could arise. First,
there may not be many relevant observations that are sensitive to that specific grid box, particu-
larly over the open ocean or near the poles. In those circumstances, the estimated weights could
be inaccurate. Second, that approach could produce vastly different weights in adjacent grid
boxes, a result that is unlikely to be physically realistic. For example, the estimated weights for
one model grid box over eastern North Dakota should look somewhat similar to the weights
for a grid box over western North Dakota. If the two sets of weights were completely unrelated,
one could argue that the optimization would be an over-fit. A localization radius of 1500km pre-
cludes these potential problems.

The weights (@), estimated using this localization procedure, will have the following covari-
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ance matrix (k x k) (Hunt et al., 2007):

P = (k— DI+ (Y)TRY (E.5)

where H(x' + X'w) ~ 7 + Y'w (E.6)

Fourth, we generate 64 realizations that collectively represent our posterior uncertainty in the
meteorology. Like the best estimate (¥?), these posterior realizations are also a linear combination
of the prior model realizations (Hunt et al., 2007):

X = 74+ X ([(k— 1)1%}%), (E.7)

1
1

where ’%’ denotes the symmetric square root of the covariance matrix. The subscript i on the

right hand side of the equation refers to individual columns of the matrix.

Fifth, and finally, we adjust the overall model ensemble spread to match the model uncer-
tainties implied by the meteorological observations. We refer to this process as adaptive covari-
ance inflation (e.g., Li et al., 2009; Miyoshi, 2011). Note that this step is new since previous CAM-
LETKF studies by Liu et al. (2011) and Liu et al. (2012).

Adaptive inflation operates on the following principle: the ensemble variance and nugget

variance should match against the actual model-data residuals (e.g., Li et al., 2009):

E {(z ~ H(J_cb)> (z - H(J_cb)) T] — HPHT + R (E.8)

where P = (k—1)71x*(x")T (E.9)

In that equation, E denotes the expected value, and the matrix H (n x m) is a linearization of

the function H(). In practice, however, these covariance matrices can diverge from the actual
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residuals (Refer to Miyoshi (2011) for more detail.). Therefore, we estimate a scaling factor (a) for
the diagonal elements of the covariance matrix P (m x m). This scaling factor can be estimated by
manipulating Eq. E.8 as in Li et al. (2009) and Miyoshi (2011):

tr [(z —H(@)) (z - H(a‘cb))T o Rfl] —n

¢ tr [HPHT o R 1] (E10)

In this equation, tr refers to the matrix trace, and the symbol o indicates element-wise multipli-
cation. The result of Eq. E.10 is then weighted against the scaling factor from the previous model
time step to produce a final scaling factor estimate (refer to Li et al., 2009; Miyoshi, 2011).

To date, the use of a single scaling factor () per grid box has been a standard practice in en-
semble Kalman filters applied to weather models (e.g., Szunyogh et al., 2008; Liu et al., 2011,
2012; Miyoshi & Kunii, 2012; Kang et al., 2012), and we do the same here. When we estimate a
single scaling factor per box, we leverage more observations to make a more stable inflation es-
timate. Otherwise, adaptive inflation can become challenging to implement; adaptive inflation
performs poorly when observations are sparse (e.g., Miyoshi, 2011).

We also estimate the nugget variance (U%{J) for a given observation type (j) using the model

output and observations (Desroziers et al., 2005; Li et al., 2009):

o = 2 (E.11)

As with a, the result in Eq. E.11 is also weighted against the estimated variance from the previ-
ous time step to produce a final variance estimate (Li et al., 2009). Unlike the localized LETKF
calculations, we estimate a single nugget variance for the entire globe (for each meteorological
observation type). In other words, in Eq. E.11, the inputs represent global values for observation

type j, not a localized implementation as in previous equations.
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After these steps, the model-assimilation cycle begins again with another 6-hour CAM-CLM
forecast. The posterior ensemble members (x¢) become the initial conditions for this next CAM-
CLM forecast.

In our study, we utilize biospheric, oceanic, biomass burning, and fossil fuel CO; fluxes from
CarbonTracker (CT), and we do not change these fluxes in response to any parameters within
CAM-CLM. The original CT fluxes have a temporal resolution of 3 h. We average these fluxes to
a 6 h resolution for all of the CAM-CLM simulations in this study, the length of each model time
step.

Furthermore, we use CT as the initial condition for global atmospheric CO, mixing ratios on
1January and 1 May 2009. Each CAM ensemble member uses the same initial condition for at-
mospheric CO,, so any subsequent differences in CO, among the model realizations are due en-

tirely to meteorological uncertainties.

E.2 CAM-LETKF performance metrics

The paragraphs that follow discuss two different metrics of CAM-LETKF performance: large-
scale meteorology model-data comparisons and a more in-depth view of the estimated variances
(i.e., the variance inflation and the nugget variance).

First, we examine the meteorology model-data residuals for the model best-guess (x¥*). Figure

E.1 displays the root mean squared model-measurement error (RMSE, \/(1/n) > (y — H(¥%))?),
broken down by time and by observation type. Each point plotted in Fig. E.1 is the RMSE com-
puted from all available global observations. This RMSE appears comparable in magnitude to
several existing weather reanalysis products. For example, these statistics are similar to CAM-
LETKF simulations by Liu et al. (2011), though simulations in that paper cover a much shorter

time period. Furthermore, the temperature, pressure, and wind errors reported here are in the
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Figure E.1: Root mean squared errors for the CAM-LETKEF best estimate compared against various meteo-
rological observations (RMSE, /(1/n) Y_(y — H(Z"))?).
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Figure E.2: The variance inflation factors for the CAM model surface layer, averaged over each 6 hourly
estimation period in February and July, 2009. In this study, we estimate a different inflation factor for
each model grid box and each 6 hourly estimation period. More specifically, we estimate a single inflation
factor for all model parameters (e.g., wind, temperature, surface pressure, and specific humidity) in each
box.

range of those listed for North American Regional Reanalysis (NARR) and ERA-Interim reanaly-
sis (Mesinger et al., 2006; Dee et al., 2011).

The remainder of this section discusses the estimated covariance matrix parameters. Fig. E.2
displays a map of the average variance inflation factors («) in the model surface layer for Febru-
ary and July, 2009, and Fig. E.3 shows how the average variance inflation factor changes over
time through five months of CAM-LETKF simulations.

These figures show several notable patterns, three of which we discuss in more detail. First,
the inflation factors in Fig. E.2 are highest over North America, Asia, and Australia, regions with
relatively abundant meteorological observations. A number of previous studies confirm this pos-
itive relationship between data density and covariance inflation (e.g., Anderson, 2009; Miyoshi,

2011; Miyoshi & Kunii, 2012). Furthermore, Miyoshi (2011) points out that a high inflation fac-
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Figure E.3: Time series of the average variance inflation factors, both at the surface and for all vertical
model levels. The inflation factors show some variability during the model spin-up periods, then stabilize
to relatively constant values.

tor in observation-rich regions may cause the ensemble spread to be too large downwind. This
explanation may account for the adjacent regions of high inflation (over continents) and low in-
flation (over the oceans) in Fig. E.2.

Second, the global average of the inflation factors is less than one (Fig. E.3). Even though the
inflation factors, on average, decrease the ensemble variance, the global ensemble variance re-
mains relatively constant over time. For example, the average 6 hourly model ensemble spread
at meteorology observation sites is comparable in February, June, and July: ~1.5 m s~! for zonal
and meridional wind (standard deviation), ~0.7 K for surface temperature, and ~1.1 mb for sur-
face pressure. This consistency, in spite of the small inflation average, may be due to the nonlin-
ear nature of the meteorological model — differences among individual ensemble members can
escalate or intensify over the 6-hour meteorology forecast.

A third notable feature is the low inflation values over eastern, tropical Pacific Ocean. These
low values are intentional by design; we set a very low initial estimate for the variance infla-
tion in this region of the globe. Higher inflation values cause the ensemble variance to increase

rapidly in this region and lead to unphysical temperature estimates near the tropopause. This
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issue is due to an enigmatic temperature instability in the meteorological model. In the forecast
stage of the CAM model, the ensemble’s temperature spread in this region can increase rapidly if
the initial conditions (i.e., the posterior ensemble from the previous time step) have a sufficiently
large spread.

Normally, one might expect the adaptive inflation to correct for this issue; the adaptive infla-
tion adjusts the variance of the meteorology model ensemble to match the actual model-data
residuals. In theory, this procedure should prevent the ensemble spread from exploding (given
sufficient data). However, the inflation factor, by design, cannot change suddenly from one time
step to another. The adaptive inflation procedure uses the previous time step as the prior infla-
tion estimate, and that prior estimate has a finite uncertainty (in this case, a prior standard devia-
tion of 0.03 — similar to the values used by Miyoshi (2011)). Because of this prior uncertainty, the
adaptive inflation factor must evolve slowly over many days if it changes at all. In most cases,
this property is desirable because it prevents a small number of observations from making dra-
matic changes to the evolution of the model-data system. However, in the case of this tempera-
ture instability, the instability in the model develops over 4-5 model time steps, much faster than
the response time of the adaptive inflation factor.

The adaptive inflation procedure requires an initial inflation estimate for the first time step
of the model run (i.e., an initial condition). The adaptive procedure then updates this estimate
at the each model time step (e.g., Eq. E.10). For this initial estimate or initial condition, we set
a small value (0.4) for the equatorial western Pacific. During the one-month model spin-up pe-
riod, the estimated inflation value evolves substantially from the initial estimate in most regions
of the globe (e.g., Fig. E.3). Over this region of the Pacific, however, the estimated inflation fac-
tor does not evolve or change very much; either this initial estimate is consistent with the actual
model-data residuals, or the meteorological data (and the adaptive inflation procedure) are not

very informative over the region. In either case, this small initial condition prevents the ensem-
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ble spread from becoming unstable over the region.

In addition to the covariance inflation, the nugget variance also remains consistent over time.
Fig. E.4 shows the square root of the nugget variance for each observation type and at each model
time period. Note that we estimate different values of the nugget variances by observation type
and time, but the estimated variances are spatially constant across the globe. These estimates
remain consistent over time, except for the initial January spin-up period, during which the esti-

mate slowly evolves from the initial guess.

E.3 Uncertainties in atmospheric CO, transport

This section of the supplement provides more detailed plots of the CO, transport uncertainties
shown in Fig. 7.2 of the main article. In particular, the plots in this section (Figs. E.5 — E.8) visu-
alize the transport uncertainties for different time slices of the day and show how CO; transport
uncertainties differ between day and nighttime. The first two figures (Figs. E.5 and E.6) display
the mean 6 hourly CO, transport uncertainties for February and July, 2009, a setup analogous to
Figs. 7.2a-b in the main manuscript. Conversely, Figs. E.7 and E.8 exhibit the uncertainties in the
month-long mean CO; concentrations, analogous to Figs. 7.2c-d in the main article.

In general, the 6 hourly uncertainties vary widely depending on the local time with higher
uncertainties at night (Figs. E.5 and E.6). Note that case study one in the main article (sections
7.2.4 and 7.3.3) only uses model output associated with local afternoon CO, measurements. In
contrast to these 6 hourly uncertainties, the uncertainties in monthly-mean concentrations do not
vary as much by time of day (Figs. E.7 and E.8). For example, over North America and northern
Eurasia in February, the CO; uncertainties are equally high during all times of day. However, a
diurnal cycle in the month-long uncertainties is apparent over some regions — equatorial Africa,

South America, and over Northern Hemisphere land regions in summer.
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Figure E.4: The square root of the nugget variance (%) estimated within CAM-LETKEF.
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6-hourly uncertainties for February, 2009:

Figure E.5: This figure displays the average 6 hourly CO, transport uncertainties in the model surface
layer for a) 0 UTC, b) 6 UTC, c¢) 12 UTC, and d) 18 UTC. This figure is similar to Fig. 7.2a in the main
manuscript except the uncertainties (95% confidence interval) shown here are disaggregated by time of
day.
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6-hourly uncertainties for July, 2009:

Figure E.6: The CO, transport uncertainties for July, 2009, analogous to Fig. E.5 but for a different time
period.
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Uncertainty in month-long mean for February, 2009:

Figure E.7: Uncertainties (95% confidence interval) in the monthly-averaged surface CO, concentrations
for February, 2009. This figure is similar to Figs. 7.2c in the main article except the uncertainties are broken
down by time of day for a) 0 UTC, b) 6 UTC, ¢) 12 UTC, and d) 18 UTC.
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Uncertainty in month-long mean for July, 2009:

Figure E.8: Uncertainties in the monthly-averaged surface CO, concentrations for July, 2009.
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These transport uncertainties are in the range of the uncertainties estimated in a number of
previous studies. For example, the spatial patterns in the 6 hourly uncertainties are similar to
those modeled by Liu et al. (2011) using CAM-LETKF and temperature-scaled CO; fluxes from
TRANSCOM 3. In addition, a number of previous studies focused on the effects of perturbing
individual meteorological parameters at specific observation sites or for individual aircraft cam-
paigns (e.g., Gerbig et al., 2003, 2008; Lin & Gerbig, 2005; Kretschmer et al., 2012). Our 6 hourly
transport uncertainties, though very different in both scope and scale, are comparable in mag-
nitude to the individual parameter uncertainties estimated by Gerbig et al. (2003), Gerbig et al.
(2008), and Kretschmer et al. (2012) but are less than the uncertainties in Lin & Gerbig (2005).
Furthermore, our estimated 6 hourly transport uncertainties also appear similar to or slightly
smaller than the model-data mismatch errors estimated at individual observation sites in sev-
eral inversion studies (e.g., Peters et al., 2007; Schuh et al., 2010; Gourdji et al., 2012). Model-data
mismatch includes not only transport errors but also any model or data errors unrelated to an
imperfect initial flux estimate. This result may reflect the fact that atmospheric transport often

dominates model-data mismatch errors.

E4 CO, observation sites

This section lists the geographic locations of the measurement sites used for case study one in
the main article (Figs. 7.4-7.5). Note that this case study does not use actual data from these ob-
servation sites, only model output generated for these locations. These observation site locations
are available from the GAWSIS Station Information System (MeteoSwiss Federal Office of Mete-
orology and Climatology, 2014). The sites below are grouped by ecoregion, and the regions used

here are defined by Olson et al. (2001).
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Table E.1: A list of observation sites used for the analysis in Figs. 7.4-7.5. All measurement sites are towers
unless otherwise noted.

Site Code Lat. (°N) Lon. (°) Alt. (m)

East Asian temperate broadleaf and mixed forests

Anmyeon-do, Korea AMY 36.5 126.3 47
Gosan, Korea GSN 33.3 126.2 72
Kisai, Japan KIS 36.1 139.6 13
Mikawa-Ichinomiya, Japan MKW 34.9 137.4 50
Mount Dodaira, Japan DDR 36.0 139.2 840
Ryori, Japan RYO 39.0 141.8 260

European temperate broadleaf and mixed forests

Bialystok, Poland BIK 53.1 23.0 183
Cesar, Netherlands CBW 52.0 49 -2
Diabla Gora, Poland DIG 54.2 22.1 157
Gif sur Yvette, France GIF 48.7 2.1 167
Hegyhatsal, Hungary HUN 47.0 16.7 248
Heidelberg, Germany HEI 49.4 8.7 116
Hohenpeissenberg, Germany HPB 47.8 11.02 985
Kollumerwaard, Netherlands KMW 53.3 6.3 0
Mace Head, Ireland MHD 53.3 -9.9 8
Moussala, Bulgaria BEO 422 23.6 2925
Neuglobsow, Germany NGL 53.2 13.0 65
Norunda, Sweden NOR 60.0 17.3 70
Ochsenkopf, Germany OXK 50.0 11.8 1185
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Table E.1: (Continued)

Orleans, France TRN 48.0 2.1 131
Puy de Dome, France PUY 45.8 3.0 1465
Schauinsland, Germany SSL 47.92 7.92 1205
Tall Tower Angus, United Kingdom TTA 56.6 3.0 400

North American temperate broadleaf and mixed forests

Argyle, Maine, US AMT 45.0 68.7 50
Beech Island, South Carolina, US SCT 33.4 81.8 115
Egbert, Ontario, Canada EGB 442 -79.8 253
Park Falls, Wisconsin, US (tower / aircraft) LEF 46.0 90.3 472
Shenandoah National Park, Virginia SNP 38.6 78.4 1008
Worchester, Massachusetts, US (aircraft) NHA 43.0 -70.6 0

North American boreal forests | taiga

Candle Lake, Sask., Canada CDL 53.9 -104.7 489
Chibougmau, Quebec, Canada CHM 49.7 74.3 393
East Trout Lake, Sask., Canada (tower / aircraft) ETL 54.4 -105.0 492
Fraserdale, Ontario, Canada FSD 499 -81.6 210
Poker Flats, Alaska, US (aircraft) PFA 65.1 -147.3 210

North American temperate grasslands, savannas and shrublands

Beaver Crossing, Nebraska (aircraft) BNE 40.8 -97.3 466
Bondville, Illinois, US (aircraft) AAO 40.1 -88.4 230
Boulder, Colorado, US BAO 40.1 -105.0 1584
Briggsdale, Colorado (aircraft) CAR 40.4 -104.3 1740
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Table E.1: (Continued)

Dahlen, North Dakota (aircraft) DND 475 -99.2 472
Lac La Biche, Alberta, Canada LLB 55.0 -112.5 540
Southern Great Plains, Oklahoma, US (tower/aircraft) SGP 36.78 -97.5 314
Moody, Texas, US WKT 31.3 97.3 251
Walnut Grove, California, US WGC 38.3 121.5 0

West Branch, Iowa, US (tower and aircraft) WBI 41.7 91.4 242

E.5 CO, model-data comparisons

In this portion of the supplement, we show several CO, model and data time series from dif-
ferent types of observation sites (Figs. E.9 — E.14). These plots illustrate the capacity of CAM-
LETKEF (paired with CarbonTracker fluxes) to reproduce hourly-averaged CO, observations.
Furthermore, the plots provide greater context on the CO, ensemble spread. The top panel of
each figure illustrates the ensemble mean and ensemble spread. The bottom panel shows the
modeled CO, boundary layer enhancement — modeled CO, at the observation site minus mod-
eled concentrations at 600 hPa. This enhancement approximates the CO, contribution rom re-
gional surface fluxes. This increment is used for case study one in the main paper (section 7.2.4).
In general, the modeled contribution of regional fluxes is largest during summer where bio-

sphere uptake is strongest (e.g., LEF and AMT).
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Figure E.9: Panel (a) displays the hourly-averaged CO, measurements at Argyle tower, Maine, and the
modeled CO; time series using CAM-LETKF and CarbonTracker fluxes. Panel (b) shows the estimated
contribution of regional CO; fluxes at the observation site. Here, we define this contribution as modeled
CO; at the surface minus modeled CO, at 600 hPa.
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Figure E.10: This figure is analogous to Fig. E.9 but the Argyle tower in July 2009. Note that the top panel
of each time-series plot (Figs. E.9a— E.14a) has a different y-axis, but the bottom panels (Figs. E.9b— E.14b)
all have the same y-axis.
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Figure E.11: This figure is analogous to Fig. E.9 but the Barrow, Alaska, in February 2009.
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Barrow, Alaska
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Figure E.12: This figure is analogous to Fig. E.9 but the Barrow, Alaska, in July 2009.
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Figure E.13: This figure is analogous to Fig. E.9 but for Park Falls, Wisconsin, in July 2009.
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Moody, Texas (WKT)

a) Model-measurement comparison — Observations
= Model ensemble

mean and 95%
conf. interval

4(|)0

3!|95

3€|90

CO, (ppm)

30

b) Modeled contribution of regional fluxes [ Contribution

P

-10

o
(\Il_

I I [ [ [
2/1/2009 2/7/2009 2/13/2009 2/19/2009 2/25/2009

Figure E.14: This figure is analogous to Fig. E.9 but for Moody, Texas, in February 2009.
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E.6  Plots of meteorological variables and uncertainties

This section describes, in greater detail, the monthly-averaged meteorological parameters con-
sidered in the synthetic tracer experiment (case study two, sections 7.2.5 and 7.3.4). Table S2 lists
all of the meteorological parameters that we compare against the synthetic tracer CV. We com-
pare the synthetic tracer against the monthly-averaged meteorological parameters, the standard
deviation in the monthly mean parameters, and the CV of each meteorological parameter — 60
parameters in total.

Figures E.15-E.17 display a number of monthly-averaged meteorological parameters estimated
by CAM-LETKF - both those listed in section 7.3.4 and several additional variables for refer-
ence. For example, these figures display monthly mean zonal and meridional winds, and the
uncertainties (standard deviation) (Fig. E.17). These uncertainties exhibit a number of patterns
consistent with well-known meso- and synoptic-scale circulation patterns. For example, the un-
certainty in zonal winds is generally higher in many coastal regions including the west coast
of North and South America. These patterns may reflect uncertainties in modeled sea breezes.
Uncertainties in the zonal surface winds are also higher over many mountainous regions, includ-
ing the US Rocky Mountains and Himalayas. These uncertainties may reflect the challenges of
modeling winds over complex terrain. In addition, uncertainties in both zonal and meridional

surface winds are higher along the Intertropical Convergence Zone (ITCZ).
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Figure E.15: Maps of monthly-averaged meteorological parameters as estimated by CAM-LETKE.
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Figure E.16: Maps of monthly-averaged meteorological parameters as estimated by CAM-LETKE.
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Table S2: Candidate meteorological variables

Meteorological variable Abbreviation Units
Vertical velocity Q Pas™!
Vertical velocity at 510hPa Qs10 Pas™!
Net longwave flux at the surface FLNS W m~2
Downwelling solar flux at surface FSDS W m~2
Net solar flux at surface FSNS Wm™
Solar flux reflected from surface FSRS Wm™
Liquid cloud water LCWAT kg kg™!
Surface latent heat flux LHFLX W m™2
Planetary boundary layer height PBLH m
Large-scale, stable precipitation rate PRECL ms™!
Convective precipitation rate PRECC ms™!
Specific humidity Q kg kg™!
Relative humidity RELHUM %
Surface sensible heat flux SHFLX W m~2
Net radiative flux at surface SRFRAD Wm™
Temperature T K
Zonal wind U ms™!
Meridional wind \% ms!
Vertical diffusion diffusivity VDD m? s
Total wind velocity wind ms™!
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