43 research outputs found

    Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method

    Get PDF
    Tubulins are still considered as typical proteins of Eukaryotes. However, more recently they have been found in the unusual bacteria Prosthecobacter (btubAB). In this study, the genomic organization of the btub-genes and their genomic environment were characterized by using the newly developed Two-Step Gene Walking method. In all investigated Prosthecobacters, btubAB are organized in a typical bacterial operon. Strikingly, all btub-operons comprise a third gene with similarities to kinesin light chain sequences. The genomic environments of the characterized btub-operons are always different. This supports the hypothesis that this group of genes represents an independent functional unit, which was acquired by Prosthecobacter via horizontal gene transfer. The newly developed Two-Step Gene Walking method is based on randomly primed polymerase chain reaction (PCR). It presents a simple workflow, which comprises only two major steps—a Walking-PCR with a single specific outward pointing primer (step 1) and the direct sequencing of its product using a nested specific primer (step 2). Two-Step Gene Walking proved to be highly efficient and was successfully used to characterize over 20 kb of sequence not only in pure culture but even in complex non-pure culture samples

    Disentangling the taxonomy of Rickettsiales and description of two novel symbionts ("Candidatus Bealeia paramacronuclearis" and "Candidatus Fokinia cryptica") sharing the cytoplasm of the ciliate protist Paramecium biaurelia

    Get PDF
    In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium "Candidatus Bealeia paramacronuclearis" occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, "Candidatus Fokinia cryptica," whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that "Candidatus Bealeia paramacronuclearis" clusters with the so-called "basal" Rickettsiales, and "Candidatus Fokinia cryptica" belongs to "Candidatus Midichloriaceae." We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and "Candidatus Midichloriaceae" (RAM clade), and the other represented by "basal Rickettsiales," including "Candidatus Bealeia paramacronuclearis." Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise "basal Rickettsiales" to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family "Candidatus Hepatincolaceae" and redefine the family Holosporaceae

    Phylogenetic relationships among endosymbiotic R-body producer : Bacteria providing their host the killer trait

    No full text
    R-body producing bacterial endosymbionts of Paramecium spp. transform their hosts into \u201ckiller\u201d paramecia and provide them a selective advantage. This killer trait is connected to the presence of R-bodies, which are peculiar, tightly coiled protein ribbons capable of rapid unrolling. Based mainly on those two characteristics the respective obligate intracellular bacteria have been comprised in the genus Caedibacter and additional traits such as host species, subcellular localization, and R-body dimensions and mode of unrolling were used for species discrimination. Previous studies applying the full-cycle rRNA approach demonstrated the polyphyly of this assemblage. Following this approach, we obtained new sequences and in situ hybridizations for five strains of Caedibacter taeniospiralis and four strains associated to Caedibacter varicaedens and Caedibacter caryophilus. Detailed phylogenetic reconstructions confirm the association of C. taeniospiralis to Fastidiosibacteraceae and to Holosporales in case of the others. Therefore, we critically revise the taxonomy of the latter group. The high 16S rRNA gene sequence similarity among the type strains of Caedibacter varicaedens and C. caryophilus indicate that they should be classified within a single species for which we propose Caedimonas varicaedens comb. nov. owing to the priority of Caedibacter varicaedens. Moreover, we propose to establish the new family Caedimonadaceae fam. nov. to encompass Caedimonas varicaedens, \u201cCa. Paracaedimonas acanthamoebae\u201d comb. nov. and \u201cCa. Nucleicultrix amoebiphila\u201d within the order Holosporales

    Detection of a Novel Subspecies of Francisella noatunensis as Endosymbiont of the Ciliate Euplotes raikovi.

    No full text
    Francisella are facultative intracellular bacteria causing severe disease in a broad range of animals. Two species are notable: Francisella tularensis, the causative organism of tularemia and a putative warfare agent, and Francisella noatunensis, an emerging fish pathogen causing significant losses in wild and farmed fish. Although various aspects of Francisella biology have been intensively studied, their natural reservoir in periods between massive outbreaks remains mysterious. Protists have been suspected to serve as a disguised vector of Francisella and co-culturing attempts demonstrate that some species are able to survive and multiply within protozoan cells. Here, we report the first finding of a natural occurrence of Francisella sp. as a protist endosymbiont. By molecular and morphological approaches, we identified intracellular bacteria localized in a strain of the marine ciliate Euplotes raikovi, isolated from the coast of Adriatic Sea. Phylogenetic analysis placed these endosymbionts within the genus Francisella, in close but distinct association with F. noatunensis. We suggest the establishment of a novel subspecies within F. noatunensis and propose the cytoplasmatic endosymbiont of E. raikovi as “Candidatus F. noatunensis subsp. endociliophora” subsp. nov

    Detection of a Novel Subspecies of Francisella noatunensis as Endosymbiont of the Ciliate Euplotes raikovi

    No full text
    Francisella are facultative intracellular bacteria causing severe disease in a broad range of animals. Two species are notable: Francisella tularensis, the causative organism of tularemia and a putative warfare agent, and Francisella noatunensis, an emerging fish pathogen causing significant losses in wild and farmed fish. Although various aspects of Francisella biology have been intensively studied, their natural reservoir in periods between massive outbreaks remains mysterious. Protists have been suspected to serve as a disguised vector of Francisella and co-culturing attempts demonstrate that some species are able to survive and multiply within protozoan cells. Here, we report the first finding of a natural occurrence of Francisella sp. as a protist endosymbiont. By molecular and morphological approaches, we identified intracellular bacteria localized in a strain of the marine ciliate Euplotes raikovi, isolated from the coast of Adriatic Sea. Phylogenetic analysis placed these endosymbionts within the genus Francisella, in close but distinct association with F. noatunensis. We suggest the establishment of a novel subspecies within F. noatunensis and propose the cytoplasmatic endosymbiont of E. raikovi as “Candidatus F. noatunensis subsp. endociliophora” subsp. nov

    Molecular characterization of the obligate endosymbiont "Caedibacter macronucleorum" Fokin and Gortz, 1993 and of its host Paramecium duboscqui strain Ku4-8

    No full text
    Abstract: Bacterial endosymbionts of protozoa were often described as new species by protozoologists mainly on the basis of few morphological characters and partly by host specificity. Many of these species have never been validated by prokaryotic microbiologists whose taxonomic rules are quite different from those of protozoologists, who use the Zoological Code of Nomenclature. "Caedibacter macronucleorum" Fokin and Gortz 1993, an endosymbiont of Paramecium duboscqui, belongs to this category. Here we provide the molecular characterization of this organism and of its host P. duboscqui strain Ku4-8. Bacterial 16S rRNA gene sequence analysis proved that "C. macronucleorum" belongs to the Alphaproteobacteria. It is closely related to Caedibacter caryophilus but not to Caedibacter taeniospiralis, which belongs to the Gammaproteobacteria. "Caedibacter macronucleorum" and C. caryophilus 16S rRNA genes show a similarity value of 99%. This high 16S rRNA sequence similarity and the lack of ..
    corecore