171 research outputs found
Dynamical stability of the crack front line
Dynamical stability of the crack front line that propagates between two
plates is studied numerically using the simple two-dimensional mass-spring
model. It is demonstrated that the straight front line is unstable for low
speed while it becomes stable for high speed. For the uniform model, the
roughness exponent in the slower speed region is fairly constant around 0.4 and
there seems to be a rough-smooth transition at a certain speed. For the
inhomogeneous case with quenched randomness, the transition is gradual.Comment: 14 pages, 7 figure
Origin of the Universal Roughness Exponent of Brittle Fracture Surfaces: Correlated Percolation in the Damage Zone
We suggest that the observed large-scale universal roughness of brittle
fracture surfaces is due to the fracture process being a correlated percolation
process in a self-generated quadratic damage gradient. We use the quasi-static
two-dimensional fuse model as a paradigm of a fracture model. We measure for
this model, that exhibits a correlated percolation process, the correlation
length exponent nu approximately equal to 1.35 and conjecture it to be equal to
that of uncorrelated percolation, 4/3. We then show that the roughness exponent
in the fuse model is zeta = 2 nu/(1+2 nu)= 8/11. This is in accordance with the
numerical value zeta=0.75. As for three-dimensional brittle fractures, a
mean-field theory gives nu=2, leading to zeta=4/5 in full accordance with the
universally observed value zeta =0.80.Comment: 4 pages RevTeX
Anomalous roughening of wood fractured surfaces
Scaling properties of wood fractured surfaces are obtained from samples of
three different sizes. Two different woods are studied: Norway spruce and
Maritime pine. Fracture surfaces are shown to display an anomalous dynamic
scaling of the crack roughness. This anomalous scaling behavior involves the
existence of two different and independent roughness exponents. We determine
the local roughness exponents to be 0.87 for spruce and 0.88
for pine. These results are consistent with the conjecture of a universal local
roughness exponent. The global roughness exponent is different for both woods,
= 1.60 for spruce and = 1.35 for pine. We argue that the global
roughness exponent is a good index for material characterization.Comment: 7 two columns pages plus 8 ps figures, uses psfig. To appear in
Physical Review
Distinguishing fractional and white noise in one and two dimensions
We discuss the link between uncorrelated noise and Hurst exponent for one and
two-dimensional interfaces. We show that long range correlations cannot be
observed using one-dimensional cuts through two-dimensional self-affine
surfaces whose height distributions are characterized by a Hurst exponent lower
than -1/2. In this domain, fractional and white noise are not distinguishable.
A method analysing the correlations in two dimensions is necessary. For Hurst
exponents larger than -1/2, a crossover regime leads to a systematic over
estimate of the Hurst exponent.Comment: 3 pages RevTeX, 4 Postscript figure
Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach
Observations of earthquake swarms and slow propagating ruptures on related faults suggest a close relation between the two phenomena. Earthquakes are the signature of fast unstable ruptures initiated on localized asperities while slow aseismic deformations are experienced on large stable segments of the fault plane. The spatial proximity and the temporal coincidence of both fault mechanical responses highlight the variability of fault rheology. However, the mechanism relating earthquakes and aseismic processes is still elusive due to the difficulty of imaging these phenomena of large spatiotemporal variability at depth. Here we present laboratory experiments that explore, in great detail, the deformation processes of heterogeneous interfaces in the brittle-creep regime. We track the evolution of an interfacial crack over 7 orders of magnitude in time and 5 orders of magnitude in space using optical and acoustic sensors. We explore the response of the system to slow transient loads and show that slow deformation episodes are systematically accompanied by acoustic emissions due to local fracture energy disorder. Features of acoustic emission activities and deformation rate distributions of our experimental system are similar to those in natural faults. On the basis of an activation energy model, we link our results to the Rate and State friction model and suggest an active role of local creep deformation in driving the seismic activity of earthquake swarms
Roughness and multiscaling of planar crack fronts
We consider numerically the roughness of a planar crack front within the
long-range elastic string model, with a tunable disorder correlation length
. The problem is shown to have two important length scales, and the
Larkin length . Multiscaling of the crack front is observed for scales
below , provided that the disorder is strong enough. The asymptotic
scaling with a roughness exponent is recovered for scales
larger than both and . If , these regimes are separated
by a third regime characterized by the Larkin exponent .
We discuss the experimental implications of our results.Comment: 8 pages, two figure
Fracture Roughness Scaling: a case study on planar cracks
Using a multi-resolution technique, we analyze large in-plane fracture fronts
moving slowly between two sintered Plexiglas plates. We find that the roughness
of the front exhibits two distinct regimes separated by a crossover length
scale . Below , we observe a multi-affine regime and the
measured roughness exponent is in
agreement with the coalescence model. Above , the fronts are
mono-affine, characterized by a roughness exponent , consistent with the fluctuating line model. We relate the
crossover length scale to fluctuations in fracture toughness and the stress
intensity factor
Roughness at the depinning threshold for a long-range elastic string
In this paper, we compute the roughness exponent zeta of a long-range elastic
string, at the depinning threshold, in a random medium with high precision,
using a numerical method which exploits the analytic structure of the problem
(`no-passing' theorem), but avoids direct simulation of the evolution
equations. This roughness exponent has recently been studied by simulations,
functional renormalization group calculations, and by experiments (fracture of
solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is
significantly larger than what was stated in previous simulations, which were
consistent with a one-loop renormalization group calculation. The data are
furthermore incompatible with the experimental results for crack propagation in
solids and for a 4He contact line on a rough substrate. This implies that the
experiments cannot be described by pure harmonic long-range elasticity in the
quasi-static limit.Comment: 4 pages, 3 figure
Scaling of Crack Surfaces and Implications on Fracture Mechanics
The scaling laws describing the roughness development of crack surfaces are
incorporated into the Griffith criterion. We show that, in the case of a
Family-Vicsek scaling, the energy balance leads to a purely elastic brittle
behavior. On the contrary, it appears that an anomalous scaling reflects a
R-curve behavior associated to a size effect of the critical resistance to
crack growth in agreement with the fracture process of heterogeneous brittle
materials exhibiting a microcracking damage.Comment: Revtex, 4 pages, 3 figures, accepted for publication in Physical
Review Letter
- …