63 research outputs found

    Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction

    Get PDF
    Background-Mutations in the MYBPC3 gene, encoding cardiac myosin-binding protein C (cMyBP-C), are a frequent cause of familial hypertrophic cardiomyopathy. In the present study, we investigated whether protein composition and function of the sarcomere are altered in a homogeneous familial hypertrophic cardiomyopathy patient group with frameshift mutations in MYBPC3 (MYBPC3(mut)). Methods and Results-Comparisons were made between cardiac samples from MYBPC3 mutant carriers (c. 2373dupG, n=7; c. 2864_2865delCT, n=4) and nonfailing donors (n=13). Western blots with the use of antibodies directed against cMyBP-C did not reveal truncated cMyBP-C in MYBPC3(mut). Protein expression of cMyBP-C was significantly reduced in MYBPC3(mut) by 33 +/- 5%. Cardiac MyBP-C phosphorylation in MYBPC3(mut) samples was similar to the values in donor samples, whereas the phosphorylation status of cardiac troponin I was reduced by 84 +/- 5%, indicating divergent phosphorylation of the 2 main contractile target proteins of the beta-adrenergic pathway. Force measurements in mechanically isolated Triton-permeabilized cardiomyocytes demonstrated a decrease in maximal force per cross-sectional area of the myocytes in MYBPC3(mut) (20.2 +/- 2.7 kN/m(2)) compared with donor (34.5 +/- 1.1 kN/m(2)). Moreover, Ca2+ sensitivity was higher in MYBPC3(mut) (pCa(50)=5.62 +/- 0.04) than in donor (pCa(50)=5.54 +/- 0.02), consistent with reduced cardiac troponin I phosphorylation. Treatment with exogenous protein kinase A, to mimic beta-adrenergic stimulation, did not correct reduced maximal force but abolished the initial difference in Ca2+ sensitivity between MYBPC3(mut) (pCa(50)=5.46 +/- 0.03) and donor (pCa(50)=5.48 +/- 0.02). Conclusions-Frameshift MYBPC3 mutations cause haploinsufficiency, deranged phosphorylation of contractile proteins, and reduced maximal force-generating capacity of cardiomyocytes. The enhanced Ca2+ sensitivity in MYBPC3(mut) is due to hypophosphorylation of troponin I secondary to mutation-induced dysfunction. (Circulation. 2009; 119: 1473-1483.

    Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of total and detyrosinated α-tubulin were markedly higher in HCMSMP than in HCMSMN and controls. Higher tubulin detyrosination was also found in 2 unrelated MYBPC3 mouse models and its inhibition with parthenolide normalized contraction and relaxation time of isolated cardiomyocytes. CONCLUSIONS: Our findings indicate that microtubules and especially its detyrosination contribute to the pathomechanism of patients with HCMSMP. This is of clinical importance since it represents a potential treatment target to improve cardiac function in patients with HCMSMP, whereas a beneficial effect may be limited in patients with HCMSMN

    The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (k ACT) and the rate constant of isometric relaxation (slow k REL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces k ACT, slow k REL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases k ACT, slow k REL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease

    Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle

    Get PDF
    Myosin binding protein-C (MyBP-C), a major thick filament associated sarcomeric protein, plays an important functional and structural role in regulating sarcomere assembly and crossbridge formation. Missing or aberrant MyBP-C proteins (both cardiac and skeletal) have been shown to cause both cardiac and skeletal myopathies, thereby emphasising its importance for the normal functioning of the sarcomere. Mutations in cardiac MyBP-C are a major cause of hypertrophic cardiomyopathy (HCM), while mutations in skeletal MyBP-C have been implicated in a disease of skeletal muscle—distal arthrogryposis type 1 (DA-1). Here we report the first detailed electron microscopy studies on human cardiac and skeletal tissues carrying MyBP-C gene mutations, using samples obtained from HCM and DA-1 patients. We have used established image averaging methods to identify and study the axial distribution of MyBP-C on the thick filament by averaging profile plots of the A-band of the sarcomere from electron micrographs of human cardiac and skeletal myopathy specimens. Due to the difficulty of obtaining normal human tissue, we compared the distribution to the A-band structure in normal frog skeletal, rat cardiac muscle and in cardiac muscle of MyBP-C-deficient mice. Very similar overall profile averages were obtained from the C-zones in cardiac HCM samples and skeletal DA-1 samples with MyBP-C gene mutations, suggesting that mutations in MyBP-C do not alter its mean axial distribution along the thick filament

    The embryological basis of subclinical hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomeric proteins, the commonest being MYBPC3 encoding myosin-binding protein C. It is characterised by left ventricular hypertrophy but there is an important pre-hypertrophic phenotype with features including crypts, abnormal mitral leaflets and trabeculae. We investigated these during mouse cardiac development using high-resolution episcopic microscopy. In embryonic hearts from wildtype, homozygous (HO) and heterozygous (HET) Mybpc3-targeted knock-out (KO) mice we show that crypts (one or two) are a normal part of wildtype development but they almost all resolve by birth. By contrast, HO and HET embryos had increased crypt presence, abnormal mitral valve formation and alterations in the compaction process. In scarce normal human embryos, crypts were sometimes present. This study shows that features of the human pre-hypertrophic HCM phenotype occur in the mouse. In an animal model we demonstrate that there is an embryological HCM phenotype. Crypts are a normal part of cardiac development but, along with the mitral valve and trabeculae, their developmental trajectory is altered by the presence of HCM truncating Mybpc3 gene mutation

    Irish general practitioner attitudes toward decriminalisation and medical use of cannabis: results from a national survey.

    Get PDF
    BACKGROUND: Governmental debate in Ireland on the de facto decriminalisation of cannabis and legalisation for medical use is ongoing. A cannabis-based medicinal product (Sativex®) has recently been granted market authorisation in Ireland. This unique study aimed to investigate Irish general practitioner (GP) attitudes toward decriminalisation of cannabis and assess levels of support for use of cannabis for therapeutic purposes (CTP). METHODS: General practitioners in the Irish College of General Practitioner (ICGP) database were invited to complete an online survey. Anonymous data yielded descriptive statistics (frequencies, percentages) to summarise participant demographic information and agreement with attitudinal statements. Chi-square tests and multi-nominal logistic regression were included. RESULTS: The response rate was 15% (n = 565) which is similar to other Irish national GP attitudinal surveys. Over half of Irish GPs did not support the decriminalisation of cannabis (56.8%). In terms of gender, a significantly higher proportion of males compared with females (40.6 vs. 15%; p < 0.0001) agreed or strongly agreed with this drug policy approach. A higher percentage of GPs with advanced addiction specialist training (level 2) agreed/strongly agreed that cannabis should be decriminalised (54.1 vs. 31.5%; p = 0.021). Over 80% of both genders supported the view that cannabis use has a significant effect on patients' mental health and increases the risk of schizophrenia (77.3%). Over half of Irish GPs supported the legalisation of cannabis for medical use (58.6%). A higher percentage of those who were level 1-trained (trained in addiction treatment but not to an advanced level) agreed/strongly agreed cannabis should be legalised for medical use (p = 0.003). Over 60% agreed that cannabis can have a role in palliative care, pain management and treatment of multiple sclerosis (MS). In the regression response predicator analysis, females were 66.2% less likely to agree that cannabis should be decriminalised, 42.5% less likely to agree that cannabis should be legalised for medical use and 59.8 and 37.6% less likely to agree that cannabis has a role in palliative care and in the treatment of multiple sclerosis (respectively) than males. CONCLUSIONS: The majority of Irish GPs do not support the present Irish governmental drug policy of decriminalisation of cannabis but do support the legalisation of cannabis for therapeutic purposes. Male GPs and those with higher levels of addiction training are more likely to support a more liberal drug policy approach to cannabis for personal use. A clear majority of GPs expressed significant concerns regarding both the mental and physical health risks of cannabis use. Ongoing research into the health and other effects of drug policy changes on cannabis use is required

    Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of t

    Myosin binding protein C: implications for signal-transduction

    Get PDF
    Myosin binding protein C (MYBPC) is a crucial component of the sarcomere and an important regulator of muscle function. While mutations in different myosin binding protein C (MYBPC) genes are well known causes of various human diseases, such as hypertrophic (HCM) and dilated (DCM) forms of cardiomyopathy as well as skeletal muscular disorders, the underlying molecular mechanisms remain not well understood. A variety of MYBPC3 (cardiac isoform) mutations have been studied in great detail and several corresponding genetically altered mouse models have been generated. Most MYBPC3 mutations may cause haploinsufficiency and with it they may cause a primary increase in calcium sensitivity which is potentially able to explain major features observed in HCM patients such as the hypercontractile phenotype and the well known secondary effects such as myofibrillar disarray, fibrosis, myocardial hypertrophy and remodelling including arrhythmogenesis. However the presence of poison peptides in some cases cannot be fully excluded and most probably other mechanisms are also at play. Here we shall discuss MYBPC interacting proteins and possible pathways linked to cardiomyopathy and heart failure
    corecore