181 research outputs found

    Calculation of Elastic Green's Functions for Lattices with Cavities

    Full text link
    In this Brief Report, we present an algorithm for calculating the elastic Lattice Greens Function of a regular lattice, in which defects are created by removing lattice points. The method is computationally efficient, since the required matrix operations are on matrices that scale with the size of the defect subspace, and not with the size of the full lattice. This method allows the treatment of force fields with multi-atom interactions.Comment: 3 pages. RevTeX, using epsfig.sty. One figur

    Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    Get PDF
    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic "superspin." Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results. (C) 2015 AIP Publishing LLC

    Characterization of defect structures in nanocrystalline materials by X-ray line profile analysis

    Get PDF
    X-ray line profile analysis is a powerful alternative tool for determining dislocation densities, dislocation type, crystallite and subgrain size and size-distributions, and planar defects, especially the frequency of twin boundaries and stacking faults. The method is especially useful in the case of submicron grain size or nanocrystalline materials, where X-ray line broadening is a well pronounced effect, and the observation of defects with very large density is often not easy by transmission electron microscopy. The fundamentals of X-ray line broadening are summarized in terms of the different qualitative breadth methods, and the more sophisticated and more quantitative whole pattern fitting procedures. The efficiency and practical use of X-ray line profile analysis is shown by discussing its applications to metallic, ceramic, diamond-like and polymer nanomaterials

    Effects of crack tip geometry on dislocation emission and cleavage: A possible path to enhanced ductility

    Full text link
    We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60∘^\circ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughness of the material by several orders of magnitude. We thus propose an atomic-scale mechanism at the crack tip, that ultimately may lead to a high fracture toughness in some materials where a sharp crack would seem to be able to propagate in a brittle manner. Results for blunt cracks loaded in mode II are also presented.Comment: 12 pages, REVTeX using epsfig.sty. 13 PostScript figures. Final version to appear in Phys. Rev. B. Main changes: Discussion slightly shortened, one figure remove

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Hardness of porous nanocrystalline Co-Ni electrodeposits

    Get PDF
    The Hall-Petch relationship can fail when the grain size is below a critical value of tens of nanometres. This occurs particularly for coatings having porous surfaces. In this study, electrodeposited nanostructured Co-Ni coatings from four different nickel electroplating baths having grain sizes in the range of 11-23 nm have been investigated. The finest grain size, approximately 11 nm, was obtained from a coating developed from the nickel sulphate bath. The Co-Ni coatings have a mixed face centred cubic and hexagonal close-packed structures with varying surface morphologies and different porosities. A cluster-pore mixture model has been proposed by considering no contribution from pores to the hardness. As the porosity effect was taken into consideration, the calculated pore-free hardness is in agreement with the ordinary Hall-Petch relationship even when the grain size is reduced to 11 nm for the Co-Ni coatings with 77±2 at% cobalt. The present model was applied to other porous nanocrystalline coatings, and the Hall-Petch relationship was maintained. © 2013 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht. © KIM and Springer
    • …
    corecore