377 research outputs found

    Variations in the spin period of the radio-quiet pulsar 1E 1207.4-5209

    Full text link
    The X-ray source 1E 1207.4-5209 is a compact central object in the G296.5+10.0 supernova remnant. Its spin period of 424 ms, discovered with the Chandra X-ray Observatory, suggests that it is a neutron star. The X-ray spectrum of this radio-quiet pulsar shows at least two absorption lines, first spectral features discovered in radiation from an isolated neutron star. Here we report the results of timing analysis of Chandra and XMM-Newton observations of this source showing a non-monotonous behavior of its period. We discuss three hypotheses which may explain the observational result. The first one assumes that 1E 1207.$-5209 is a glitching pulsar, with frequency jumps of \Delta f > 5 \muHz occurring every 1-2 years. The second hypothesis explains the deviations from a steady spin-down as due to accretion, with accretion rate varying from \sim 10^{13} to >10^{16} g s^{-1}, from a disk possibly formed from ejecta produced in the supernova explosion. Finally, the period variations could be explained assuming that the pulsar is in a wide binary system with a long period, P_orb \sim 0.2-6 yr, and a low-mass companion, M_2 < 0.3 M_\odot.Comment: 20 pages, 5 figures, accepted for publications in ApJ. 2004 ApJ, in pres

    The pulsar wind nebula of the Geminga pulsar

    Full text link
    The superb spatial resolution of Chandra has allowed us to detect a 20''-long tail behind the Geminga pulsar, with a hard spectrum (photon index 1.0+/-0.2) and a luminosity (1.3+/-0.2) 10^{29} ergs/s in the 0.5 - 8 keV band, for an assumed distance of 200 pc. The tail could be either a pulsar jet, confined by a toroidal magnetic field of about 100 microGauss, or it can be associated with the shocked relativistic wind behind the supersonically moving pulsar confined by the ram pressure of the oncoming interstellar medium. We also detected an arc-like structure 5'' - 7'' ahead of the pulsar, extended perpendicular to the tail, with a factor of 3 lower luminosity. We see a 3-sigma enhancement in the Chandra image apparently connecting the arc with the southern outer tail that has been possibly detected with XMM-Newton. The observed structures imply that the Geminga's pulsar wind is intrinsically anisotropic.Comment: Revised version: data analysis described in more detail, Figure 2 replaced; 6 pages, 2 color figures; accepted for publication in ApJ (v.643, 2006 June 1

    On the highly reddened members in 6 young galactic star clusters - a multiwavelength study

    Full text link
    The spectral and reddening properties of 211 highly reddened proper motion members with V<15V < 15 mag in 6 young galactic star clusters are investigated using low resolution spectroscopic, broad-band UBVRIJHKUBVRIJHK and mid-IR data. We report emission features in CaII HK and HI lines for a sample of 29 stars including 11 stars reported for the first time and also provide either a new or more reliable spectral class for a sample of 24 stars. CaII triplet width measurements are used to indicate the presence of an accretion disk for a dozen stars and to hint luminosity for a couple of stars. On the basis of spectral features, near-IR excesses, dereddened color-color diagrams and mid-IR spectral indices we identify a group of 28 pre-main sequence cluster members including 5 highly probable Herbig Ae/Be and 6 classical T Tauri star. A total of 25 non-emission MS stars, amounting to ∌\sim 10 % early type MS members, appears to show Vega-like characteristics or are precursors to such a phenomenon. The various membership indicators suggest that ∌\sim 16% of the PM members are non-members. A significant fraction (>>70%) of program stars in NGC 1976, NGC 2244, NGC 6530 and NGC 6611 show anomalous reddening with RVR_{V} = 5.11±0.115.11\pm0.11, 3.60±0.053.60\pm0.05, 3.87±0.053.87\pm0.05 and 3.56±0.023.56\pm 0.02, respectively, indicating the presence of grain size dust larger than that typical to the diffuse medium. A small number of stars in NGC 1976, NGC 2244 and NGC 6611 also show normal behavior while the cluster NGC 6823 appears to have a normal reddening. Three highly luminous late type giants, one in NGC 2244 and two in NGC 6530, appears to be member and are in post-hydrogen-core-burning stages suggesting a prolonged duration (∌\sim 25 Myrs) of star formation.Comment: 12 pages, 13 figures, submitted to MNRA

    X-ray emission from PSR J1809-1917 and its pulsar wind nebula, possibly associated with the TeV gamma-ray source HESS J1809-193

    Full text link
    We detected X-ray emission from the 50-kyr-old pulsar J1809-1917 and resolved its pulsar wind nebula (PWN) with Chandra. The pulsar spectrum fits PL+BB model with the photon index of 1.2 and the BB temperature of 2 MK for n_{H}=0.7\times 10^{22} cm^{-2}. The luminosities are(4\pm 1)\times 10^{31} ergs s^{-1} for the PL component (in the 0.5-8 keV band) and ~1\times 10^{32} ergs s^{-1} for the BB component (bolometric) at a plausible distance of 3.5 kpc. The bright inner PWN component of a 3''\times12'' size is elongated in the north-south direction, with the pulsar close to its south end. This component is immersed in a larger (20''\times40''), similarly elongated outer PWN component of lower surface brightness. The elongated shape of the compact PWN can be explained by the ram pressure confinement of the pulsar wind due to the supersonic motion of the pulsar. The PWN spectrum fits a PL model with photon index of 1.4\pm0.1 and 0.5-8 keV luminosity of 4\times10^{32} ergs s^{-1}. The compact PWN appears to be inside a large-scale (~4'\times4') emission more extended to the south of the pulsar, i.e. in the direction of the alleged pulsar motion. To explain the extended X-ray emission ahead of the moving pulsar, one has to invoke strong intrinsic anisotropy of the pulsar wind or assume that this emission comes from a relic PWN swept by the asymmetrical reverse SNR shock. The pulsar and its PWN are located within the extent of the unidentified TeV source HESS J1809-193 whose brightest part is offset by ~8' to the south of the pulsar, i.e. in the same direction as the large-scale X-ray emission. Although the association between J1809-1917 and HESS J1809-193 is plausible, an alternative source of relativistic electrons powering HESS J1809-193 might be the serendipitously discovered X-ray source CXOU J180940.7-192544.Comment: 13 pages, 10 figures and 3 tables, submitted to ApJ. Version with the high-resolution figures is available at http://www.astro.psu.edu/users/green/J1809/ms_astroph.pd

    Phase Structure of Compact Star in Modified Quark-Meson Coupling Model

    Full text link
    The K−^- condensation and quark deconfinement phase transitions are investigated in the modified quark-meson coupling model. It is shown that K−^- condensation is suppressed because of the quark deconfinement when B1/4<B^{1/4}<202.2MeV, where BB is the bag constant for unpaired quark matter. With the equation of state (EOS) solved self-consistently, we discuss the properties of compact stars. We find that the EOS of pure hadron matter with condensed K−^- phase should be ruled out by the redshift for star EXO0748-676, while EOS containing unpaired quark matter phase with B1/4B^{1/4} being about 180MeV could be consistent with this observation and the best measured mass of star PSR 1913+16. We then probe into the change of the phase structures in possible compact stars with deconfinment phase as the central densities increase. But if the recent inferred massive star among Terzan 5 with M>>1.68M⊙_{\odot} is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out and therefore these exotic phases are unlikely to appear within neutron stars.Comment: 11 pages, 5 figure

    X-ray Spectrum and Pulsations of the Vela Pulsar

    Get PDF
    We report the results of the spectral and timing analysis of observations of the Vela pulsar with the Chandra X-ray Observatory. The spectrum shows no statistically significant spectral lines in the observed 0.25--8.0 keV band. It consists of two distinct continuum components. The softer component can be modeled as either a magnetic hydrogen atmosphere spectrum with kT = 59 +- 3 eV, R = 15.5 +- 1.5 km, or a standard blackbody with kT = 129 +- 4 eV, R = 2.1 +- 0.2 km (the radii are for a distance of 250 pc). The harder component, modeled as a power-law spectrum, gives photon indices depending on the model adopted for the soft component: gamma = 1.5 +- 0.3 for the magnetic atmosphere soft component, and gamma = 2.7 +- 0.4 for the blackbody soft component. Timing analysis shows three peaks in the pulse profile, separated by about 0.3 in phase. Energy-resolved timing provides evidence for pulse profile variation with energy. The higher energy (E > 1.8 keV) profile shows significantly higher pulsed fraction.Comment: 4 pages, 2 figures, To appear in "Neutron Stars in Supernova Remnants" (ASP Conference Proceedings), eds P. O. Slane and B. M. Gaensler Corrected TYPO

    Deep infrared observations of the puzzling central X-ray source in RCW103

    Full text link
    1E 161348-5055 (1E 1613) is a point-like, soft X-ray source originally identified as a radio-quiet, isolated neutron star, shining at the center of the 2000 yr old supernova remnant RCW103. 1E 1613 features a puzzling 6.67 hour periodicity as well as a dramatic variability over a time scale of few years. Such a temporal behavior, coupled to the young age and to the lack of an obvious optical counterpart, makes 1E 1613 a unique source among all compact objects associated to SNRs. It could either be the first low-mass X-ray binary system discovered inside a SNR, or a peculiar isolated magnetar with an extremely slow spin period. Analysis of archival IR observations, performed in 2001 with the VLT/ISAAC instrument, and in 2002 with the NICMOS camera onboard HST unveils a very crowded field. A few sources are positionally consistent with the refined X-ray error region that we derived from the analysis of 13 Chandra observations. To shed light on the nature of 1E 1613, we have performed deep IR observations of the field with the NACO instrument at the ESO/VLT, searching for variability. We find no compelling reasons to associate any of the candidates to 1E 1613. On one side, within the frame of the binary system model for the X-ray source, it is very unlikely that one of the candidates be a low-mass companion star to 1E 1613. On the other side, if the X-ray source is an isolated magnetar surrounded by a fallback disc, we cannot exclude that the IR counterpart be hidden among the candidates. If none of the potential counterparts is linked to the X-ray source, 1E 1613 would remain undetected in the IR down to Ks>22.1. Such an upper limit is consistent only with an extremely low-mass star (an M6-M8 dwarf) at the position of 1E 1613, and makes rather problematic the interpretation of 1E 1613 as an accreting binary system.Comment: 26 pages, 5 figures. Accepted for publication in Ap

    Spot-like Structures of Neutron Star Surface Magnetic Fields

    Full text link
    There is growing evidence, based on both X-ray and radio observations of isolated neutron stars, that besides the large--scale (dipolar) magnetic field, which determines the pulsar spin--down behaviour, small--scale poloidal field components are present, which have surface strengths one to two orders of magnitude larger than the dipolar component. We argue in this paper that the Hall--effect can be an efficient process in producing such small--scale field structures just above the neutron star surface. It is shown that due to a Hall--drift induced instability, poloidal magnetic field structures can be generated from strong subsurface toroidal fields, which are the result of either a dynamo or a thermoelectric instability acting at early times of a neutron star's life. The geometrical structure of these small--scale surface anomalies of the magnetic field resembles that of some types of ``star--spots''. The magnetic field strength and the length--scales are comparable with values that can be derived from various observations.Comment: 4 pages, 2 figures, accepted by Astronomy & Astrophysics Letters; language improved, 2nd para of Sect. 3 change

    X-ray observations of the compact central object in supernova remnant G347.3-0.5

    Full text link
    We present Chandra, XMM-Newton and RXTE observations of 1WGA J1713.4-3949, a compact source at the center of the galactic supernova remnant (SNR) G347.3-0.5. The X-ray spectrum of the source is well-fitted by the sum of a blackbody component with a temperature of about 0.4 keV plus a power law component with photon index about 4. We found no pulsations down to 4% in the 0.01-0.16 Hz range and down to 25% in the 0.01-128 Hz range. This source resembles other compact central objects (CCOs) in SNRs, and we suggest that 1WGA J1713.4-3949 is the associated neutron star for G347.3--0.5. We also measured the properties of the adjacent radio pulsar PSR J1713-3945 with a 392 ms period and show that it is not associated with 1WGA J1713.4-3949 nor, most probably, with SNR G347.3-0.5 as well.Comment: 8 pages, 2 figures, accepted for publication in ApJ Letter
    • 

    corecore