1,117 research outputs found

    Toward a mathematical formalism of performance, task difficulty, and activation

    Get PDF
    The rudiments of a mathematical formalism for handling operational, physiological, and psychological concepts are developed for use by the man-machine system design engineer. The formalism provides a framework for developing a structured, systematic approach to the interface design problem, using existing mathematical tools, and simplifying the problem of telling a machine how to measure and use performance

    Flow, suspension, and mixing dynamics in DASGIP bioreactors: Part 1

    Get PDF
    The bioreactor flow environment has a significant impact on process performance, especially in stem cell cultures. The work of Correia et al found intermittent agitation modes to improve induced pluripotent stem cell (iPSC)‐cardiomyocyte differentiation yields; however, to date, the impact within the flow has not been fully characterized. This work aims to characterize the flow dynamics occurring within a commercially available DASGIP bioreactor, equipped with a two‐blade paddle impeller, operating under different agitation modes and for two bottom geometries. The paddle impeller configuration generated an axial flow profile due to a large impeller D/T and blade confinement with the bioreactor wall. The application of intermittent agitation was shown to induce two transient spikes in flow velocity and shear stress, the amplification of which increased with dwell duration. Marginally increasing the dwell duration was shown previously to increase differentiation yields, therefore it can be stipulated that introduction of these spikes was favorable toward cardiogenic differentiation

    Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    Full text link
    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN

    Results of 1/4-Scale Experiments. Vapor Simulant And Liquid Jet A Tests

    Get PDF
    A quarter-scale engineering model of the center wing tank (CWT) of a 747-100 was constructed. This engineering model replicated the compartmentalization, passageways, and venting to the atmosphere. The model was designed to scale the fluid dynamical and combustion aspects of the explosion, not the structural failure of the beams or spars. The effect of structural failure on combustion was examined by using model beams and spars with deliberately engineered weak connections to the main tank structure. The model was filled with a simulant fuel (a mixture of propane and hydrogen) and ignited with a hot wire. The simulant fuel was chosen on the basis of laboratory testing to model the combustion characteristics (pressure rise and flame speed) of Jet A vapor created by a Jet A liquid layer at 50C at an altitude of 13.8 kft. A series of experiments was carried out in this model in order to: (a) investigate combustion in a CWT geometry; and (b) provide guidance to the TWA 800 crash investigation. The results of the experiments were observed with high-speed film, video, and still cameras, fast and slow pressure sensors, thermocouples, photodetectors, and motion sensors. A special pseudo-schlieren system was used to visualize flame propagation within the tank. This report describes the test program, facility, instrumentation, the first 30 experiments, comparisons between experiments, and performance of the instrumentation; then examines the significance of these results to the TWA 800 crash investigation. The key results of this study are: Flame Motion: The motion of flame was dominated by the effects of turbulence created by jetting through the passageways and vent stringers. A very rapid combustion event (lasting 10 to 20 ms) occurred once the flame traveled outside of the ignition bay and interacted with the turbulent flow. Most of the gas within the tank was burned during this rapid event. Compartments: The combustion time decreased with an increasing number of compartments (bays) within the tank. With six bays, combustion took only 100 to 150 ms to be completed from the time of ignition until the end of the rapid combustion phase. The total combustion event was three to four times shorter with compartments than without. Venting: Venting to the outside of the tank through the model vent stringers had a negligible effect on the combustion progress or on the peak pressure reached at the end of the burn. Ignition Location: Variation of the ignition location produced distinctive pressure loads on the structural components. Liquid Fuel: Lofting of a cold liquid fuel layer was produced by the combustion-induced gas motion. Although this spray of liquid eventually ignited and burned, it did not contribute to the pressure loading. Structural Failure: Structural failure resulted in flame acceleration, decreasing the overall combustion time. TWA 800 Investigation: The pressure loads were sufficiently high, up to 4 bar, and the combustion events were sufficiently short, that the forward portion (spanwise beam 3, front spar) of the CWT structure would fail as a direct consequence of the explosion. A combination of pressure loads was produced in some tests consistent with the TWA 800 wreckage. Replica tests, structural modeling, and sensitivity studies on fuel concentration are needed before any conclusions can be drawn about probable ignition locations. Cargo Bay: Tests with a simplified model of a half-full cargo bay indicated that repeated pressure waves with an amplitude of 1 bar or less are produced when an explosion scenario similar to TWA 800 is tested. Future Testing: Future studies should include replica tests, tests with Jet A vapor and warm liquid Jet A layers, and sensitivity tests to examine ignition location, fuel concentration, and vent area perturbations. Summary: Explosion tests in a 747-100 CWT model reveal that a very complex pattern of combustion occurs due the interaction of the flame and the flow-generated turbulence. A wide range of structural load patterns occur, depending on the location of the ignition source. Some of these load patterns are consistent with damage believed to be associated with the initial explosion event in TWA 800. Sensitivity of the loading to the ignition location indicates that narrowing down the ignition location in TWA 800 may be possible. However, the complexity of the combustion and structural failure processes in the actual center wing tank mandates extremely careful consideration of the uncertainties that enter into this process
    corecore