4 research outputs found

    Identification of interleukin-27 (IL-27)/IL-27 receptor subunit alpha as a critical immune axis for in vivo hiv control

    Get PDF
    Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (> 50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia (P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/beta-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor (IL27RA) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and the blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach (Peer ReviewedPostprint (published version

    [Fourier transform spectral analysis of cutaneous blood flux in systemic sclerosis].

    No full text
    International audienceOBJECTIVES: Endothelial dysfunction is an early event and a critical step in the pathogenesis of systemic sclerosis. Accurate and sensitive tests are needed to correctly assess the degree of microvascular endothelial dysfunction. Spectral analysis of skin blood flow contains a characteristic low frequency reported to be associated with endothelial function in healthy subjects. We hypothesized that the relative amplitude of the oscillation recorded for this low frequency spectrum (0.008 to 0.021 Hz) would be less pronounced in patients with systemic sclerosis than in healthy subjects and in patients with primary Raynaud's phenomenon. PATIENTS AND METHOD: Twenty-one patients with systemic sclerosis, twenty patients with primary Raynaud phenomenon and eleven healthy subjects were enrolled. Skin perfusion was recorded at rest for 30 minutes using laser Doppler flowmetry on the pad of the left third left. Fourier transform spectral analysis was applied to obtain the mean amplitude of the cutaneous blood perfusion signal of the total spectrum from 0.008 to 1.6 Hz and the mean amplitude of each characteristic frequency in the laser Doppler flowmeter blood flow oscillations. RESULTS: The relative amplitudes of each characteristic frequency in the laser Doppler flowmeter blood flow oscillations were not statistically different in the three groups, particularly for frequency spectrum from 0.008 Hz to 0.021 Hz. CONCLUSION: Fourier transform spectral analysis of baseline cutaneous blood flow does not provide significant information. Further studies are required, perhaps using wavelet spectral analysis or stimulated conditions

    Identification of interleukin-27 (IL-27)/IL-27 receptor subunit alpha as a critical immune axis for in vivo hiv control

    No full text
    Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (> 50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia (P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/beta-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor (IL27RA) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and the blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach (Peer Reviewe

    Non-invasive Methods of Assessing Raynaud’s Phenomenon

    No full text
    corecore