297 research outputs found

    Annihilation Diagrams in Two-Body Nonleptonic Decays of Charmed Mesons

    Full text link
    In the pole-dominance model for the two-body nonleptonic decays of charmed mesons D→PVD \rightarrow PV and D→VVD \rightarrow VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the D→PPD \rightarrow PP decays vanish independently.Comment: 9 pages (+ 3 figures available upon request), UR-1316, ER-40685-766, IC/93/21

    Superfluid to Mott insulator transition in the one-dimensional Bose-Hubbard model for arbitrary integer filling factors

    Full text link
    We study the quantum phase transition between the superfluid and the Mott insulator in the one-dimensional (1D) Bose-Hubbard model. Using the time-evolving block decimation method, we numerically calculate the tunneling splitting of two macroscopically distinct states with different winding numbers. From the scaling of the tunneling splitting with respect to the system size, we determine the critical point of the superfluid to Mott insulator transition for arbitrary integer filling factors. We find that the critical values versus the filling factor in 1D, 2D, and 3D are well approximated by a simple analytical function. We also discuss the condition for determining the transition point from a perspective of the instanton method.Comment: 6 pages, 6 figures, 2 table

    Bulk and edge excitations of a ν=1\nu =1 Hall ferromagnet

    Full text link
    In this article, we shall focus on the collective dynamics of the fermions in a ν=1\nu = 1 quantum Hall droplet. Specifically, we propose to look at the quantum Hall ferromagnet. In this system, the electron spins are ordered in the ground state due to the exchange part of the Coulomb interaction and the Pauli exclusion principle. The low energy excitations are ferromagnetic magnons. In order to obtain an effective Lagrangian for these magnons, we shall introduce bosonic collective coordinates in the Hilbert space of many-fermion systems. These collective coordinates describe a part of the fermionic Hilbert space. Using this technique, we shall interpret the magnons as bosonic collective excitations in the Hilbert space of the many-electron Hall system. Furthermore, by considering a Hall droplet of finite extent, we shall also obtain the effective Lagrangian governing the spin collective excitations at the edge of the sample.Comment: 30 pages, plain TeX, no figure

    A path integral derivation of χy\chi_y-genus

    Full text link
    The formula for the Hirzebruch χy\chi_y-genus of complex manifolds is a consequence of the Hirzebruch-Riemann-Roch formula. The classical index formulae for Todd genus, Euler number, and Signature correspond to the case when the complex variable y=y= 0, -1, and 1 respectively. Here we give a {\it direct} derivation of this nice formula based on supersymmetric quantum mechanics.Comment: 5 page

    Quantum Hydrodynamics, Quantum Benjamin-Ono Equation, and Calogero Model

    Full text link
    Collective field theory for Calogero model represents particles with fractional statistics in terms of hydrodynamic modes -- density and velocity fields. We show that the quantum hydrodynamics of this model can be written as a single evolution equation on a real holomorphic Bose field -- quantum integrable Benjamin-Ono equation. It renders tools of integrable systems to studies of nonlinear dynamics of 1D quantum liquids.Comment: 5 pages, 1 figur

    Accurate numerical verification of the instanton method for macroscopic quantum tunneling: dynamics of phase slips

    Full text link
    Instanton methods, in which imaginary-time evolution gives the tunneling rate, have been widely used for studying quantum tunneling in various contexts. Nevertheless, how accurate instanton methods are for the problems of macroscopic quantum tunneling (MQT) still remains unclear because of lack of their direct comparison with exact time evolution of the many-body Schroedinger equation. Here, we verify instanton methods applied to coherent MQT. Specifically applying the quasi-exact numerical method of time-evolving block decimation to the system of bosons in a ring lattice, we directly simulate the real-time quantum dynamics of supercurrents, where a coherent oscillation between two macroscopically distinct current states occurs due to MQT. The tunneling rate extracted from the coherent oscillation is compared with that given by the instanton method. We show that the error is within 10% when the effective Planck's constant is sufficiently small. We also discuss phase slip dynamics associated with the coherent oscillations.Comment: 19 pages, 14 figures, 1 tabl

    Production of e+e- pairs in proton-deuteron capture to 3He

    Get PDF
    The process p+d \leftrightarrow 3He + \gamma* at intermediate energies is described using a covariant and gauge-invariant model, and a realistic pd3He vertex. Both photodisintegration of 3He and proton-deuteron capture with production of e+e- pairs are studied, and results for cross sections and response functions are presented. The effect of time-like formfactors on the dilepton cross sections is investigated as well.Comment: 10 pages, 4 figures, Revtex, to be published in Physics Letters

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte

    Soliton solutions of Calogero model in harmonic potential

    Full text link
    A classical Calogero model in an external harmonic potential is known to be integrable for any number of particles. We consider here reductions which play a role of "soliton" solutions of the model. We obtain these solutions both for the model with finite number of particles and in a hydrodynamic limit. In the latter limit the model is described by hydrodynamic equations on continuous density and velocity fields. Soliton solutions in this case are finite dimensional reductions of the hydrodynamic model and describe the propagation of lumps of density and velocity in the nontrivial background.Comment: 25 pages, 2 figure

    Fluctuation effects of gauge fields in the slave-boson t-J model

    Full text link
    We present a quantitative study of the charge-spin separation(CSS) phenomenon in a U(1) gauge theory of the t-J model of high-Tc superconductures. We calculate the critical temperature of confinement-deconfinement phase transition below which the CSS takes place.Comment: Latex, 9 pages, 3 figure
    • …
    corecore