16 research outputs found

    GSK3β is a negative regulator of the transcriptional coactivator MAML1

    Get PDF
    Glycogen synthase kinase 3β (GSK3β) is involved in several cellular signaling systems through regulation of the activity of diverse transcription factors such as Notch, p53 and β-catenin. Mastermind-like 1 (MAML1) was originally identified as a Notch coactivator, but has also been reported to function as a transcriptional coregulator of p53, β-catenin and MEF2C. In this report, we show that active GSK3β directly interacts with the MAML1 N-terminus and decreases MAML1 transcriptional activity, suggesting that GSK3β might target a coactivator in its regulation of gene expression. We have previously shown that MAML1 increases global acetylation of histones, and here we show that the GSK3 inhibitor SB41, further enhances MAML1-dependent histone acetylation in cells. Finally, MAML1 translocates GSK3β to nuclear bodies; this function requires full-length MAML1 protein

    The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity

    Get PDF
    MAML1 is a transcriptional coregulator originally identified as a Notch coactivator. MAML1 is also reported to interact with other coregulator proteins, such as CDK8 and p300, to modulate the activity of Notch. We, and others, previously showed that MAML1 recruits p300 to Notch-regulated genes through direct interactions with the DNA–CSL–Notch complex and p300. MAML1 interacts with the C/H3 domain of p300, and the p300–MAML1 complex specifically acetylates lysines of histone H3 and H4 tails in chromatin in vitro. In this report, we show that MAML1 potentiates p300 autoacetylation and p300 transcriptional activation. MAML1 directly enhances p300 HAT activity, and this coincides with the translocation of MAML1, p300 and acetylated histones to nuclear bodies

    Crosstalk of Notch with p53 and p63 in cancer growth control.

    No full text
    Understanding the complexity of cancer depends on an elucidation of the underlying regulatory networks, at the cellular and intercellular levels and in their temporal dimension. This Opinion article focuses on the multilevel crosstalk between the Notch pathway and the p53 and p63 pathways. These two coordinated signalling modules are at the interface of external damaging signals and control of stem cell potential and differentiation. Positive or negative reciprocal regulation of the two pathways can vary with cell type and cancer stage. Therefore, selective or combined targeting of the two pathways could improve the efficacy and reduce the toxicity of cancer therapies
    corecore