5 research outputs found

    Enhancement of electroporation facilitated immunogene therapy via T-reg depletion

    Get PDF
    Regulatory T cells (T-regs) can negatively impact tumor antigen-specific immune responses after infiltration into tumor tissue. However, depletion of T-regs can facilitate enhanced anti-tumor responses, thus augmenting the potential for immunotherapies. Here we focus on treating a highly aggressive form of cancer using a murine melanoma model with a poor prognosis. We utilize a combination of T-reg depletion and immunotherapy plasmid DNA delivered into the B16F10 melanoma tumor model via electroporation. Plasmids encoding murine granulocyte macrophage colony-stimulating factor and human B71 were transfected with electroporation into the tumor and transient elimination of T-regs was achieved with CD25-depleting antibodies (PC61). The combinational treatment effectively depleted T-regs compared to the untreated tumor and significantly reduced lung metastases. The combination treatment was not effective in increasing the survival, but only effective in suppression of metastases. These results indicate the potential for combining T-reg depletion with immunotherapy-based gene electrotransfer to decrease systemic metastasis and potentially enhance survival

    The Role of pH Fronts in Reversible Electroporation

    Get PDF
    We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as , characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested

    Non-viral immune electro-gene therapy induces potent anti-tumour responses and has a curative effect in murine colon adenocarcinoma and melanoma cancer models

    No full text
    Antitumour efficacy of electroporated pEEV, coding for granulocyte–macrophage colony-stimulating factor and the B7-1 costimulatory immune molecule (pEEVGmCSF-b7.1) in growing solid tumours, was investigated and compared with a standard plasmid. Application of pEEVGmCSF-b7.1 led to complete tumour regression in 66% of CT26-treated tumours and 100% in the B16F10-treated tumours at day 150 post-treatment. pEEVGmCSF-b7.1 treatment was found to significantly enhance levels of both innate and adaptive immune populations in tumour and systemic sites, which corresponded to significantly increased tissue levels of proinflammatory cytokines including interferon-γ (IFN-γ) and interleukin-12 (IL-12). In contrast, pEEVGmCSF-b7.1 treatment significantly reduced the T-regulatory populations and also the anti-inflammatory cytokine IL-10. Upon further characterisation of functional immune responses, we observed a significant increase in cytotoxic (CD107a+) and IFN-γ-producing natural killer cells and also significantly more in IL-12-producing B cells. Importantly, splenocytes isolated from pEEVGmCSF-b7.1-treated ‘cured’ mice were tumour-specific and afforded significant protection in a tumour rechallenge model (Winn assay). Our data indicate that electroimmunogene therapy with the non-viral pEEVGmCSF-b7.1 is able to induce potent and durable antitumour immune responses that significantly reduce primary and also secondary tumour growth, and thus represents a solid therapeutic platform for pursuing future clinical trials
    corecore