353 research outputs found
Backward asymmetry of the Compton scattering by an isotropic distribution of relativistic electrons: astrophysical implications
The angular distribution of low-frequency radiation after single scattering
by an isotropic distribution of relativistic electrons considerably differs
from the Rayleigh angular function. In particular, the scattering by an
ensemble of ultra-relativistic electrons obeys the law p=1-cos(alpha), where
alpha is the scattering angle; hence photons are preferentially scattered
backwards. We discuss some consequences of this fact for astrophysical
problems. We show that a hot electron-scattering atmosphere is more reflective
than a cold one: the fraction of incident photons which become reflected having
suffered a single scattering event can be larger by up to 50 per cent in the
former case. This should affect the photon exchange between cold accretion
disks and hot coronae or ADAF flows in the vicinity of relativistic compact
objects; as well as the rate of cooling (through multiple inverse-Compton
scattering of seed photons supplied from outside) of optically thick clouds of
relativistic electrons in compact radiosources. The forward-backward scattering
asymmetry also causes spatial diffusion of photons to proceed slower in hot
plasma than in cold one, which is important for the shapes of Comptonization
spectra and the time delays between soft and hard radiations coming from
variable X-ray sources.Comment: 20 pages, 3 figures, to appear in Astronomy Letters, added reference
Measurement of tensor analyzing powers in deuteron photodisintegration
New accurate measurement of tensor analyzing powers T20, T21 and T22 in
deuteron photodisintegration has been performed. Wide-aperture non-magnetic
detectors allowed to cover broad kinematic ranges in a single setup: photon
energy = 25 to 600 MeV, proton emission angle in CM = 24 to 48 deg. and 70 to
102 deg. New data provide a significant improvement of a few existing
measurements. The angular dependency of the tensor asymmetries in deuteron
photodisintegration is extracted for the first time.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Proposed Search for Mixing in Polarization Phenomena
The and meson mass difference induces the mixing of the
and resonances, the amplitude of which, between the
and thresholds, is large in magnitude, of the order of , and possesses the
phase sharply varying by about 90. We suggest performing the polarized
target experiments on the reaction at high energy in
which the fact of the existence of mixing can be
unambiguously and very easily established through the presence of a strong jump
in the azimuthal asymmetry of the wave production cross section
near the thresholds. The presented estimates of the polarization
effect to be expected in experiment are to a great extent model independent.Comment: RevTeX, 9 pages, 1 figure. A number of typographical and grammatical
errors correcte
A new international research in sonochemistry of dairy product
The paper describes the results of recent research in the field of sonochemistry of the dairy products which was conducted from Australia, Russia, Belarus and Estonia. This work is related to the technology of preparation of composite formula milk from natural milk, vegetable oils and dry milk products with cavitation treatment of water used. She is devoted to obtaining a homogeneous mixtures of dairy semiproducts, from which subsequently produce dairy products such as cottage cheese or cheese, where most of the water is removed with sera. It is shown that sonochemical water treatment has a positive effect on the entire process and its outcome
Heating of gas inside radio sources to mildly relativistic temperatures via induced Compton scattering
Measured values of the brightness temperature of low-frequency synchrotron
radiation emitted by powerful extragalactic sources reach 10^11--10^12 K. If
some amount of nonrelativistic ionized gas is present within such sources, it
should be heated as a result of induced Compton scattering of the radiation. If
this heating is counteracted by cooling due to inverse Compton scattering of
the same radio radiation, then the plasma can be heated up to mildly
relativistic temperatures kT~10--100 keV. The stationary electron velocity
distribution can be either relativistic Maxwellian or quasi-Maxwellian (with
the high-velocity tail suppressed), depending on the efficiency of Coulomb
collisions and other relaxation processes. We derive several easy-to-use
approximate expressions for the induced Compton heating rate of mildly
relativistic electrons in an isotropic radiation field, as well as for the
stationary distribution function and temperature of electrons. We also give
analytic expressions for the kernel of the integral kinetic equation (one as a
function of the scattering angle and another for the case of an isotropic
radiation field), which describes the redistribution of photons in frequency
caused by induced Compton scattering in thermal plasma. These expressions can
be used in the parameter range hnu<< kT<~ 0.1mc^2 (the formulae earlier
published in Sazonov, Sunyaev, 2000 are less accurate).Comment: 22 pages, 7 figures, submitted to Astronomy Letter
- …