200 research outputs found

    Discrete Wigner functions and the phase space representation of quantum teleportation

    Full text link
    We present a phase space description of the process of quantum teleportation for a system with an NN dimensional space of states. For this purpose we define a discrete Wigner function which is a minor variation of previously existing ones. This function is useful to represent composite quantum system in phase space and to analyze situations where entanglement between subsystems is relevant (dimensionality of the space of states of each subsystem is arbitrary). We also describe how a direct tomographic measurement of this Wigner function can be performed.Comment: 8 pages, 1 figure, to appear in Phys Rev

    Test of quantum nonlocality for cavity fields

    Full text link
    There have been studies on formation of quantum-nonlocal states in spatially separate two cavities. We suggest a nonlocal test for the field prepared in the two cavities. We couple classical driving fields with the cavities where a nonlocal state is prepared. Two independent two-level atoms are then sent through respective cavities to interact off-resonantly with the cavity fields. The atomic states are measured after the interaction. Bell's inequality can be tested by the joint probabilities of two-level atoms being in their excited or ground states. We find that quantum nonlocality can also be tested using a single atom sequentially interacting with the two cavities. Potential experimental errors are also considered. We show that with the present experimental condition of 5% error in the atomic velocity distribution, the violation of Bell's inequality can be measured.Comment: 14pages, 2figures. accepted to Phys. Rev.

    Recovering coherence from decoherence: a method of quantum state reconstruction

    Get PDF
    We present a feasible scheme for reconstructing the quantum state of a field prepared inside a lossy cavity. Quantum coherences are normally destroyed by dissipation, but we show that at zero temperature we are able to retrieve enough information about the initial state, making possible to recover its Wigner function as well as other quasiprobabilities. We provide a numerical simulation of a Schroedinger cat state reconstruction.Comment: 8 pages, in RevTeX, 4 figures, accepted for publication in Phys. Rev. A (november 1999

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Sampling functions for multimode homodyne tomography with a single local oscillator

    Full text link
    We derive various sampling functions for multimode homodyne tomography with a single local oscillator. These functions allow us to sample multimode s-parametrized quasidistributions, density matrix elements in Fock basis, and s-ordered moments of arbitrary order directly from the measured quadrature statistics. The inevitable experimental losses can be compensated by proper modification of the sampling functions. Results of Monte Carlo simulations for squeezed three-mode state are reported and the feasibility of reconstruction of the three-mode Q-function and s-ordered moments from 10^7 sampled data is demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary

    Bebida contendo abacaxi (Ananas comosus) e beterraba (Beta vulgaris) para crianças: tratar termicamente ou não?

    Get PDF
    Edição dos Resumos do VI Congresso Latinoamericano e XII Congresso Brasileiro de Higienistas de Alimentos, II Encontro Nacional de Vigilùncia das Zoonoses, IV Encontro do Sistema Brasileiro de Inspeção de Produtos de Origem Animal, Gramado, abr. 2013

    Self-homodyne tomography of a twin-beam state

    Get PDF
    A self-homodyne detection scheme is proposed to perform two-mode tomography on a twin-beam state at the output of a nondegenerate optical parametric amplifier. This scheme has been devised to improve the matching between the local oscillator and the signal modes, which is the main limitation to the overall quantum efficiency in conventional homodyning. The feasibility of the measurement is analyzed on the basis of Monte-Carlo simulations, studying the effect of non-unit quantum efficiency on detection of the correlation and the total photon-number oscillations of the twin-beam state.Comment: 13 pages (two-column ReVTeX) including 21 postscript figures; to appear on Phys. Rev.

    Squeezing arbitrary cavity-field states through their interaction with a single driven atom

    Full text link
    We propose an implementation of the parametric amplification of an arbitrary radiation-field state previously prepared in a high-Q cavity. This nonlinear process is accomplished through the dispersive interactions of a single three-level atom (fundamental |g>, intermediate |i>, and excited |e> levels) simultaneously with i) a classical driving field and ii) a previously prepared cavity mode whose state we wish to squeeze. We show that, in the adiabatic approximantion, the preparation of the initial atomic state in the intermediate level |i> becomes crucial for obtaing the degenerated parametric amplification process.Comment: Final published versio

    Synthesis and tomographic characterization of the displaced Fock state of light

    Full text link
    Displaced Fock states of the electromagnetic field have been synthesized by overlapping the pulsed optical single-photon Fock state |1> with coherent states on a high-reflection beamsplitter and completely characterized by means of quantum homodyne tomography. The reconstruction reveals highly non-classical properties of displaced Fock states, such as negativity of the Wigner function and photon number oscillations. This is the first time complete tomographic reconstruction has been performed on a highly non-classical optical state
    • 

    corecore