8,587 research outputs found

    Strong enhancement of Jc in binary and alloyed in-situ MgB2 wires by a new approach: Cold high pressure densification

    Full text link
    Cold high pressure densification (CHPD) is presented as a new way to substantially enhance the critical current density of in situ MgB2 wires at 4.2 and 20 K at fields between 5 and 14 T. The results on two binary MgB2 wires and an alloyed wire with 10 wt.% B4C are presented The strongest enhancement was measured at 20K, where cold densification at 1.85 GPa on a binary Fe/MgB2 wire raised both Jcpara and Jcperp by more than 300% at 5T, while Birr was enhanced by 0.7 T. At 4.2K, the enhancement of Jc was smaller, but still reached 53% at 10 T. After applying pressures up to 6.5 GPa, the mass density dm of the unreacted (B+Mg) mixture inside the filaments reached 96% of the theoretical density. After reaction under atmospheric pressure, this corresponds to a highest mass density df in the MgB2 filaments of 73%. After reaction, the electrical resistance of wires submitted to cold densification was found to decrease, reflecting an improved connectivity. A quantitative correlation between filament mass density and the physical properties was established. Monofilamentary rectangular wires with aspect ratios a/b < 1.25 based on low energy ball milled powders exhibited very low anisotropy ratios, Gamma = Jcpara/Jcperp being < 1.4 at 4.2 K and 10T. The present results can be generalized to alloyed MgB2 wires, as demonstrated on a wire with B4C additives. Based on the present data, it follows that cold densification has the potential of further improving the highest Jcpara and Jcperp values reported so far for in situ MgB2 tapes and wires with SiC and C additives. Investigations are under work in our laboratory to determine whether the densification method CHPD can be applied to longer wire or tape lengths.Comment: Submitted to Superconductors Science and Technolog

    A study of the Haor areas of Sylhet-Mymensing districts with ERTS imageries (winter crop estimation)

    Get PDF
    There are no author-identified significant results in this report
    corecore