5 research outputs found

    Detection of resistance protein A (MxA) in paper-based immunoassays with surface enhanced Raman spectroscopy with AuAg nanoshells

    No full text
    Myxovirus protein A (MxA) is a biomarker that can be used to distinguish between viral and bacterial infections. While MxA lateral flow assays (LFAs) have been successfully used for viral vs. bacterial differential diagnosis for children, the clinically relevant level of MxA for adults has been reported to be 100 times lower, which is too low for traditional LFAs. We present results applying the use of surface enhanced Raman spectroscopy (SERS) to detect MxA. AuAg nanoshells (AuAg NSs) were used to enhance the Raman signal of mercaptobenzoic acid (4-MBA), enabling readout by SERS. The AuAg NSs were conjugated to antibodies for the biomarker of interest, resulting in a “nanotag”, that could be used in a dipstick immunoassay for detection. We first optimized the nanotag parameters using anti-human IgG/human IgG as a model antibody/antigen system, and then demonstrated detection of MxA using anti-MxA antibodies. We show that SERS readout of immunoassays for MxA can quantify MxA levels at clinically relevant levels for adult viral infection.This work was carried out within the “Doctorat en Quìmica” PhD programme of Universitat Autònoma de Barcelona, supported by the Spanish MINECO (MAT2015-70725-R) and from the Catalan Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR-143). Financial support from the HISENTS (685817) Project financed by the European Community under H20202 Capacities Programme is gratefully acknowledged. It was also funded by the CERCA Program/Generalitat de Catalunya. ICN2 acknowledges the support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV2201320295. CRQ was funded by a Rafael del Pino Fellowship, a UMass Boston Beacon Student Success Fellowship and a Goranson Award. BML was funded by a fellowship from Ronald E. McNair grant (P217A170241), Beacon Student Success Fellowship, and an Oracle/Sanofi student fellowship.Peer reviewe

    Detection of peptide-based nanoparticles in blood plasma by ELISA

    No full text
    Aims The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL.We were able to accurately measure peptides bound to pentafluorophenyl methacrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions

    A materials-science perspective on tackling COVID-19

    No full text
    corecore