1,473 research outputs found

    Ethical implication of emerging technologies

    Get PDF
    Titre de l'écran-titre (visionné le 3 mai 2007

    Kinetics and mechanism of the formation of water cluster ions from O2(plus) and H2O in He, Ar, N2, and O2 at 296 K

    Get PDF
    The reaction sequence leading from O2(+) to H3O(+)-H2O was examined in He, Ar, N2 and O2 carrier gases in a flowing afterglow system. The rate constants for the reactions were measured and the kinetic analysis for their determination is presented. For M = N2, two new steps involving the formation and reaction of O2(+)-N2 were proposed and examined. The rate constants are discussed and compared with other experimental values

    Charged Higgs bosons from the 3-3-1 models and the R(D(∗))\mathcal{R}(D^{(*)}) anomalies

    Get PDF
    Several anomalies in the semileptonic B-meson decays such as R(D(∗))\mathcal{R}(D^{(*)}) have been reported by BABARBABAR, Belle, and LHCb collaborations recently. In this paper, we investigate the contributions of the charged Higgs bosons from the 3-3-1 models to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies. We find that, in a wide range of parameter space, the 3-3-1 models might give reasonable explanations to the R(D(∗))\mathcal{R}(D^{(*)}) anomalies and other analogous anomalies of the B meson's semileptonic decays.Comment: Accpeted by Physical Review

    Record-breaking earthquake intervals in a global catalogue and an aftershock sequence

    Get PDF
    For the purposes of this study, an interval is the elapsed time between two earthquakes in a designated region; the minimum magnitude for the earthquakes is prescribed. A record-breaking interval is one that is longer (or shorter) than preceding intervals; a starting time must be specified. We consider global earthquakes with magnitudes greater than 5.5 and show that the record-breaking intervals are well estimated by a Poissonian (random) theory. We also consider the aftershocks of the 2004 Parkfield earthquake and show that the record-breaking intervals are approximated by very different statistics. In both cases, we calculate the number of record-breaking intervals (<i>n</i><sub>rb</sub>) and the record-breaking interval durations Δ<i>t</i><sub>rb</sub> as a function of "natural time", the number of elapsed events. We also calculate the ratio of record-breaking long intervals to record-breaking short intervals as a function of time, <i>r(t)</i>, which is suggested to be sensitive to trends in noisy time series data. Our data indicate a possible precursory signal to large earthquakes that is consistent with accelerated moment release (AMR) theory

    Comparing Complex Fitness Surfaces: Among-Population Variation in Mutual Sexual Selection in Drosophila serrata

    Get PDF
    The problem of synchronization of metacommunities is investigated in this article with reference to a rather general model composed of a chaotic environmental compartment driving a biological compartment. Synchronization in the absence of dispersal (i.e., the so-called Moran effect) is first discussed and shown to occur only when there is no biochaos. In other words, if the biological compartment is reinforcing environmental chaos, dispersal must be strictly above a specified threshold in order to synchronize population dynamics. Moreover, this threshold can be easily determined from the model by computing a special Lyapunov exponent. The application to prey-predator metacommunities points out the influence of frequency and coherence of the environmental noise on synchronization and agrees with all experimental studies performed on the subject

    Genetic Constraints and the Evolution of Display Trait Sexual Dimorphism by Natural and Sexual Selection.

    Get PDF
    The evolution of sexual dimorphism involves an interaction between sex-specific selection and a breakdown of genetic constraints that arise because the two sexes share a genome. We examined genetic constraints and the effect of sex-specific selection on a suite of sexually dimorphic display traits in Drosophila serrata. Sexual dimorphism varied among nine natural populations covering a substantial portion of the species range. Quantitative genetic analyses showed that intersexual genetic correlations were high because of autosomal genetic variance but that the inclusion of X-linked effects reduced genetic correlations substantially, indicating that sex linkage may be an important mechanism by which intersexual genetic constraints are reduced in this species. We then explored the potential for both natural and sexual selection to influence these traits, using a 12-generation laboratory experiment in which we altered the opportunities for each process as flies adapted to a novel environment. Sexual dimorphism evolved, with natural selection reducing sexual dimorphism, whereas sexual selection tended to increase it overall. To this extent, our results are consistent with the hypothesis that sexual selection favors evolutionary divergence of the sexes. However, sex-specific responses to natural and sexual selection contrasted with the classic model because sexual selection affected females rather than males
    • …
    corecore