769 research outputs found

    Optimal Path to Epigenetic Switching

    Full text link
    We use large deviation methods to calculate rates of noise-induced transitions between states in multistable genetic networks. We analyze a synthetic biochemical circuit, the toggle switch, and compare the results to those obtained from a numerical solution of the master equation.Comment: 5 pages. 2 figures, uses revtex 4. PR-E reviewed for publicatio

    Correlation Induced Insulator to Metal Transitions

    Full text link
    We study a spinless two-band model at half-filling in the limit of infinite dimensions. The ground state of this model in the non-interacting limit is a band-insulator. We identify transitions to a metal and to a charge-Mott insulator, using a combination of analytical, Quantum Monte Carlo, and zero temperature recursion methods. The metallic phase is a non-Fermi liquid state with algebraic local correlation functions with universal exponents over a range of parameters.Comment: 12 pages, REVTE

    Band Crossing and Novel Low-Energy Behaviour in a Mean Field Theory of a Three-Band Model on a Cu--O lattice

    Full text link
    We study correlation effects in a three-band extended Hubbard model of Cu -- O planes within the 1/N mean field approach, in the infinite U limit. We investigate the emerging phase diagram and discuss the low energy scales associated with each region. With increasing direct overlap between oxygen orbitals, tpp>0t_{pp} >0, the solution displays a band crossing which, for an extended range of parameters, lies close to the Fermi level. In turn this leads to the nearly nested character of the Fermi surface and the resulting linear temperature dependence of the quasi-particle relaxation rate for sufficiently large T. We also discuss the effect of band crossing on the optical conductivity and comment on the possible experimental relevance of our findings.Comment: 12 pages, Latex-Revtex, 6 PostScript figures. Submitted to Phys. Rev.

    Effect of three-particle correlations in low dimensional Hubbard models

    Full text link
    A simple approximation which captures some non-perturbative aspects of the one electron Green function of strongly interacting Fermion systems is developed. It provides a way to go one step beyond the usual dilute limit since particle-particle as well as particle-hole scattering are treated on the same footing. Intermediate states are constrained to contain only one particle-hole excitation besides the incoming particle. The Faddeev equations resulting from an exact treatment of this three-body problem are investigated. In one dimension the method is able to show spin and charge decoupling, but does not reproduce the exact nature of power-law singularities. Hey dudes, check out the analytical solution in section III!Comment: 21 pages plus six figures (appended as postscript files) in RevTeX v.

    Spin-Charge Decoupling and Orthofermi Quantum Statistics

    Full text link
    Currently Gutzwiller projection technique and nested Bethe ansatz are two main methods used to handle electronic systems in the UU infinity limit. We demonstrate that these two approaches describe two distinct physical systems. In the nested Bethe ansatz solutions, there is a decoupling between the spin and charge degrees of freedom. Such a decoupling is absent in the Gutzwiller projection technique. Whereas in the Gutzwiller approach, the usual antisymmetry of space and spin coordinates is maintained, we show that the Bethe ansatz wave function is compatible with a new form of quantum statistics, viz., orthofermi statistics. In this statistics, the wave function is antisymmetric in spatial coordinates alone. This feature ultimately leads to spin-charge decoupling.Comment: 12 pages, LaTex Journal_ref: A slightly abridged version of this paper has appeared as a brief report in Phys. Rev. B, Vol. 63, 132405 (2001

    Anomalous Resonance of the Symmetric Single-Impurity Anderson Model in the Presence of Pairing Fluctuations

    Full text link
    We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2\pm U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renomalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization.Comment: 4 pages, revtex, no figures. To be published in Physical Review Letter

    Renormalized Perturbation Approach for Examination of Itinerant-Localized Duality Model for Strongly Correlated Electron Systems

    Full text link
    We present a microscopic examination for the itinerant-localized duality model which has been proposed to understand anomalous properties of strongly correlated systems like the heavy fermions by Kuramoto and Miyake, and also useful to describe the anomalous properties of the high-Tc cupurates. We show that the thermodynamic potential of the strongly interacting Hubbard model can be rearranged in the form of duality model on the basis of renormalized perturbation expansion of the Luttinger-Ward functional if the one-particle spectral weight exhibits triple peak structure. We also examine the incoherent degrees of freedom described as a ``localized spin'' and show on the basis of the pertubation expansion that there exists commensurate superexchange-type interaction among the ``localized spins''.Comment: 17 pages, LaTeX, 14 figure PS file, Submitted to J. Phys. Soc. Jp

    Longitudinal spin waves in a dilute Bose gas

    Full text link
    We present a kinetic theory for a dilute noncondensed Bose gas of two-level atoms that predicts the transient spin segregation observed in a recent experiment. The underlying mechanism driving spin currents in the gas is due to a mean field effect arising from the quantum interference between the direct and exchange scattering of atoms in different spin states. We numerically solve the spin Boltzmann equation, using a one dimensional model, and find excellent agreement with experimental data.Comment: 4.5 pages, 3 embedded color figure

    Mixed symmetry superconductivity in two-dimensional Fermi liquids

    Full text link
    We consider a 2D isotropic Fermi liquid with attraction in both ss and dd channels and examine the possibility of a superconducting state with mixed ss and dd symmetry of the gap function. We show that both in the weak coupling limit and at strong coupling, a mixed s+ids+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+ds+d symmetry state at any coupling.Comment: 3 figures attached in uuencoded gzipped file

    Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics

    Full text link
    The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is computed from the solvability conditions of the density field equation with appropriate boundary conditions imposed on the solid support. The equation describing the motion of a spreading film are derived in the lubrication approximation. In the case of quasi-equilibrium spreading, is shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the contact line, and accounting for kinetic retardation of the interphase transport is necessary to build up a consistent theory.Comment: 14 pages, 5 figures, to appear in PR
    • …
    corecore