662 research outputs found
Transdet: a matched-filter based algorithm for transit detection - application to simulated COROT light curves
We present a matched-filter based algorithm for transit detection and its
application to simulated COROT light curves. This algorithm stems from the work
by Bord\'e, Rouan & L\'eger (2003). We describe the different steps we intend
to take to discriminate between planets and stellar companions using the three
photometric bands provided by COROT. These steps include the search for
secondary transits, the search for ellipsoidal variability, and the study of
transit chromaticity. We also discuss the performance of this approach in the
context of blind tests organized inside the COROT exoplanet consortium.Comment: 6 pages, 4 figures, in Transiting Extrasolar Planets Workshop,
meeting held in Heidelberg, 25-28 September 200
Observations of spatial and velocity structure in the Orion Molecular Cloud
Observations are reported of H2 IR emission in the S(1) v=1-0 line at 2.121
microns in the Orion Molecular Cloud, OMC1, using the GriF instrument on the
Canada-France-Hawaii Telescope. GriF is a combination of adaptive optics and
Fabry-Perot interferometry, yielding a spatial resolution of 0.15" to 0.18" and
a velocity discrimination as high as 1 km/s. Thanks to the high spatial and
velocity resolution of the GriF data, 193 bright H2 emission regions can be
identified in OMC1. The general characteristics of these features are described
in terms of radial velocities, brightness and spatial displacement of maxima of
velocity and brightness, the latter to yield the orientation of flows in the
plane of the sky. Strong spatial correlation between velocity and bright H2
emission is found and serves to identify many features as shocks. Important
results are: (i) velocities of the excited gas illustrate the presence of a
zone to the south of BN-IRc2 and Peak 1, and the west of Peak 2, where there is
a powerful blue-shifted outflow with an average velocity of -18 km/s. This is
shown to be the NIR counterpart of an outflow identified in the radio from
source I, a very young O-star. (ii) There is a band of weak velocity features
(<5 km/s) in Peak 1 which may share a common origin through an explosive event,
in the BN-IRc2 region, with the fast-moving fingers (or bullets) to the NW of
OMC1. (iii) A proportion of the flows are likely to represent sites of low mass
star formation and several regions show multiple outflows, probably indicative
of multiple star formation within OMC1. The high spatial and velocity
resolution of the GriF data show these and other features in more detail than
has previously been possible.Comment: 27 pages, 19 figures, submitted to A&A Version 2: Several additions,
including a section on protostellar candidates in OMC1, have been made based
on the referee's suggestions v3: corrected typograph
A giant planet imaged in the disk of the young star Beta Pictoris
Here we show that the ~10 Myr Beta Pictoris system hosts a massive giant
planet, Beta Pictoris b, located 8 to 15 AU from the star. This result confirms
that gas giant planets form rapidly within disks and validates the use of disk
structures as fingerprints of embedded planets. Among the few planets already
imaged, Beta Pictoris b is the closest to its parent star. Its short period
could allow recording the full orbit within 17 years.Comment: 4 pages, 2 figures. Published online 10 June 2010;
10.1126/science.1187187. To appear in Scienc
The near-infrared spectral energy distribution of {\beta} Pictoris b
A gas giant planet has previously been directly seen orbiting at 8-10 AU
within the debris disk of the ~12 Myr old star {\beta} Pictoris. The {\beta}
Pictoris system offers the rare opportunity to study the physical and
atmospheric properties of an exoplanet placed on a wide orbit and to establish
its formation scenario. We obtained J (1.265 {\mu}m), H (1.66 {\mu}m), and M'
(4.78 {\mu}m) band angular differential imaging of the system between 2011 and
2012. We detect the planetary companion in our four-epoch observations. We
estimate J = 14.0 +- 0.3, H = 13.5 +- 0.2, and M' = 11.0 +- 0.3 mag. Our new
astrometry consolidates previous semi-major axis (sma=8-10 AU) and excentricity
(e <= 0.15) estimates of the planet. These constraints, and those derived from
radial velocities of the star provides independent upper limits on the mass of
{\beta} Pictoris b of 12 and 15.5 MJup for semi-major axis of 9 and 10 AU. The
location of {\beta} Pictoris b in color-magnitude diagrams suggests it has
spectroscopic properties similar to L0-L4 dwarfs. This enables to derive
Log10(L/Lsun) = -3.87 +- 0.08 for the companion. The analysis with 7
PHOENIX-based atmospheric models reveals the planet has a dusty atmosphere with
Teff = 1700 +- 100 K and log g = 4.0+- 0.5. "Hot-start" evolutionary models
give a new mass of 10+3-2 MJup from Teff and 9+3-2 MJup from luminosity.
Predictions of "cold-start" models are inconsistent with independent
constraints on the planet mass. "Warm-start" models constrain the mass to M >=
6MJup and the initial entropies to values (Sinit >= 9.3Kb/baryon), intermediate
between those considered for cold/hot-start models, but likely closer to those
of hot-start models.Comment: 19 pages, accepted in Astronomy and Astrophysic
Optimization of Apodized Pupil Lyot Coronagraph for ELTs
We study the optimization of the Apodized Pupil Lyot Coronagraph (APLC) in
the context of exoplanet imaging with ground-based telescopes. The APLC
combines an apodization in the pupil plane with a small Lyot mask in the focal
plane of the instrument. It has been intensively studied in the literature from
a theoretical point of view, and prototypes are currently being manufactured
for several projects. This analysis is focused on the case of Extremely Large
Telescopes, but is also relevant for other telescope designs.
We define a criterion to optimize the APLC with respect to telescope
characteristics like central obscuration, pupil shape, low order segment
aberrations and reflectivity as function of the APLC apodizer function and mask
diameter. Specifically, the method was applied to two possible designs of the
future European-Extremely Large Telescope (E-ELT).
Optimum configurations of the APLC were derived for different telescope
characteristics. We show that the optimum configuration is a stronger function
of central obscuration size than of other telescope parameters. We also show
that APLC performance is quite insensitive to the central obscuration ratio
when the APLC is operated in its optimum configuration, and demonstrate that
APLC optimization based on throughput alone is not appropriate.Comment: 9 pages, 17 figures, accepted for publication in Astronomy &
Astrophysic
Infrared emission from interstellar dust cloud with two embedded sources: IRAS 19181+1349
Mid and far infrared maps of many Galactic star forming regions show multiple
peaks in close proximity, implying more than one embedded energy sources. With
the aim of understanding such interstellar clouds better, the present study
models the case of two embedded sources. A radiative transfer scheme has been
developed to deal with an uniform density dust cloud in a cylindrical geometry,
which includes isotropic scattering in addition to the emission and absorption
processes. This scheme has been applied to the Galactic star forming region
associated with IRAS 19181+1349, which shows observational evidence for two
embedded energy sources. Two independent modelling approaches have been
adopted, viz., to fit the observed spectral energy distribution (SED) best; or
to fit the various radial profiles best, as a function of wavelength. Both the
models imply remarkably similar physical parameters.Comment: 17 pages, 6 Figures, uses epsf.sty. To appear in Journal of
Astronophysics & Astronom
Pharmacokinetics and dosage adjustment of cefotiam in renal impaired patients
The pharmacokinetics of cefotiam were investigated after intravenous administration of 1 g to 2 healthy volunteers with normal renal function and to 16 patients whose creatinine clearance ranged from 4.7 to 0.11/h (78 to 1.66 ml/min). The elimination half-life varied from 1.1 h in normal subjects to 13 h in patients and the total plasma clearance from 21 to 0.6 1/h (350 to 10 ml/min). The urinary recovery decreased from 62% of the dose in normal subjects to 1.1% in patients, and the renal clearance from 15 to 0.03 l/h (250 to 0.5 ml/min). Plasma and renal clearances of cefotiam correlated well with the creatinine clearance. The dosage schedule for cefotiam in patients with normal renal function can be used in the presence of renal failure when the creatinine clearance is equal to or greater than 1 1/h (16.6 ml/min). For patients whose creatinine clearance is less than 1 1/h, the dose must be decreased to 75% of that for a patient with normal renal function only when it is given every 6 or 8
A probable giant planet imaged in the Beta Pictoris disk
Since the discovery of its dusty disk in 1984, Beta Pictoris has become the
prototype of young early-type planetary systems, and there are now various
indications that a massive Jovian planet is orbiting the star at ~ 10 AU.
However, no planets have been detected around this star so far. Our goal was to
investigate the close environment of Beta Pic, searching for planetary
companion(s). Deep adaptive-optics L'-band images of Beta Pic were recorded
using the NaCo instrument at the Very Large Telescope. A faint point-like
signal is detected at a projected distance of ~ 8 AU from the star, within the
North-East side of the dust disk. Various tests were made to rule out with a
good confidence level possible instrumental or atmospheric artifacts. The
probability of a foreground or background contaminant is extremely low, based
in addition on the analysis of previous deep Hubble Space Telescope images. The
object L'=11.2 apparent magnitude would indicate a typical temperature of ~1500
K and a mass of ~ 8 Jovian masses. If confirmed, it could explain the main
morphological and dynamical peculiarities of the Beta Pic system. The present
detection is unique among A-stars by the proximity of the resolved planet to
its parent star. Its closeness and location inside the Beta Pic disk suggest a
formation process by core accretion or disk instabilities rather than a
binary-like formation process.Comment: 5 pages, 3 figures, 1 table. A&A Letters, in pres
- …