561 research outputs found

    Ethane steam reforming over a platinum/alumina catalyst: effect of sulphur poisoning

    Get PDF
    In this study we have examined the adsorption of hydrogen sulfide and methanethiol over platinum catalysts and examined the effect of these poisons on the steam reforming of ethane. Adsorption of hydrogen sulfide was measured at 293 and 873 K. At 873 K the adsorbed state of hydrogen sulfide in the presence of hydrogen was SH rather than S, even though the Pt:S ratio was unity. The effect of 11.2 ppm hydrogen sulfide or methanethiol on the steam reforming of ethane was studied at 873 K and 20 barg. Both poisons deactivated the catalyst over a number of hours, but methanethiol was found to be more deleterious, reducing the conversion by almost an order of magnitude, possibly due to the co-deposition of sulfur and carbon. Changes in the selectivity revealed that the effect of sulfur was not uniform on the reactions occurring, with the production of methane reduced proportionally more than the other products, due to the surface sensitivity of the hydrogenolysis and methanation reactions. The water-gas shift reaction was affected to a lesser extent. No regeneration was observed when hydrogen sulfide was removed from the feedstream in agreement with adsorption studies. A slight regeneration was observed when methanethiol was removed from the feed, but this was believed to be due to the removal of carbon rather than sulfur. The overall effect of sulfur poisoning was to reduce activity and enhance hydrogen selectivity

    Kohlenstoffbildung auf Nickel und Nickel-Kupfer-Legierungskatalysatoren

    Get PDF
    Equilibrium, kinetic and morphological studies of carbon formation in CH4+H2, CO, and CO+H2 gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO+CO2 than in CH4+H2. A kinetic model based on information from surface science results with chemisorption of CH4 and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH4+H2 well. The kinetics of carbon formation in CO and CO+H2 gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni ≥ 0.1) inhibits carbon formation and changes the morphology of the filaments ("octopus" carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed.Center for Surface Reactivity

    Discovering markers of healthy aging:a prospective study in a Danish male birth cohort

    Get PDF
    There is a pressing need to identify markers of cognitive and neural decline in healthy late-midlife participants. We explored the relationship between cross-sectional structural brain-imaging derived phenotypes (IDPs) and cognitive ability, demographic, health and lifestyle factors (non-IDPs). Participants were recruited from the 1953 Danish Male Birth Cohort (N=193). Applying an extreme group design, members were selected in 2 groups based on cognitive change between IQ at age ~20y (IQ-20) and age ~57y (IQ-57). Subjects showing the highest (n=95) and lowest (n=98) change were selected (at age ~57) for assessments on multiple IDPs and non-IDPs. We investigated the relationship between 453 IDPs and 70 non-IDPs through pairwise correlation and multivariate canonical correlation analysis (CCA) models. Significant pairwise associations included positive associations between IQ-20 and gray-matter volume of the temporal pole. CCA identified a richer pattern - a single "positive-negative" mode of population co-variation coupling individual cross-subject variations in IDPs to an extensive range of non-IDP measures (r = 0.75, Pcorrected < 0.01). Specifically, this mode linked higher cognitive performance, positive early-life social factors, and mental health to a larger brain volume of several brain structures, overall volume, and microstructural properties of some white matter tracts. Interestingly, both statistical models identified IQ-20 and gray-matter volume of the temporal pole as important contributors to the inter-individual variation observed. The converging patterns provide novel insight into the importance of early adulthood intelligence as a significant marker of late-midlife neural decline and motivates additional study

    Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    Get PDF
    Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy and sensitivity will reduce the numbers of patients required to detect a given treatment effect in a trial, and ultimately, will allow reliable characterization of individual patients for personalized treatment. Based on open issues in the field of MS research, and the current state of the art in magnetic resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image contrasts to allow more comprehensive analyses of lesion load and atrophy, across timepoints. Image artifacts need special attention given their effects on image analysis results. (2) Automated image segmentation methods integrating the assessment of lesion load and atrophy are desirable. (3) A standard dataset with benchmark results should be set up to facilitate development, calibration, and objective evaluation of image analysis methods for MS

    Steam reforming on transition-metal carbides from density-functional theory

    Full text link
    A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
    • …
    corecore