25 research outputs found

    Early mortality in dialysis and adequacy of predialysis renal care: the picture is more complex than we thought

    No full text
    International audienceTwo new studies examine clinical events during early dialysis. Foley et al. underline a probable ascertainment bias affecting the mortality rate during the first 6 weeks and find that age is the major risk factor for very early mortality, which can be amplified by short time of predialysis nephrology care. Singhal et al. show that adequacy of predialysis renal care is determined not only by the timing of the nephrology referral but also by the number and timing of visits

    Kinematic Indices of rotation-floating space robots for on-orbit servicing

    No full text
    There is a growing need for space and in-orbit operations that would require use of advance robotic systems. The robotics systems could be used in debris removal from orbits, as well as, in on-orbit servicing activities. This paper is addressing design and control problems related to autonomous spacecraft-manipulator system for space operation. The dynamics equations for rotation floating manipulator were introduced using Lagrange approach with additional states representing the kinetic moment exchange actuators. In this paper, a serial-link manipulator with multi degree of freedoms mounted on the satellite platform was used. For detailed analysis of base motion and manipulability of the end effector, the special indices were introduced. Simulation examples to illustrate kinematic indices were shown with physical parameters for a microsatellite from Myriade series equipped with a robotic arm

    Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition

    No full text
    International audienceBACKGROUND: Ischemia-reperfusion (IR) injury leads to mitochondrial permeability transition pore opening, which contributes to cell death. The aim of this study is to determine whether ischemic or pharmacological postconditioning with cyclosporine A (CsA) might protect the kidney from lethal reperfusion injury. METHODS: Male mice underwent a unilateral (right) nephrectomy followed by 30 minutes of contralateral (left) clamping of the renal artery. We studied 4 groups at 20 minutes and 24 hours of reperfusion: a sham group (n = 4), an ischemic group (n = 6), CsA-postconditioned group (postcond-CsA, injection of 3 mg/kg of CsA 5 minutes before the end of ischemia, (n = 6), and an ischemic postconditioning (IPC) group (n = 6), consisting of 3 cycles of 30 seconds of renal ischemia with 30 seconds intervening reperfusion. After 24 hours of reperfusion, we measured plasma creatinine, urea, and histological kidney injury. The kidney mitochondria were isolated to assess the mitochondria calcium retention capacity and oxidative phosphorylation. RESULTS: At 24 hours after reperfusion, serum creatinine decreased in postcond-CsA and IPC compared to ischemic group. The histological score was also significantly improved with postcond-CsA and IPC. At 20 minutes and 24 hours of reperfusion, calcium retention capacity was decreased significantly in the ischemic group. The mitochondrial respiration stay decreased in the ischemic group at 24 hours of reperfusion, whereas the respiration was improved significantly in the postcond-CsA and IPC group. Bax and cleaved caspase 3 decreased in PostCsA and IPC group. CONCLUSIONS: Our results suggest that IPC and CsA, administered immediately before reperfusion, protect the kidney from lethal injury

    Towards Industry 4.0: The Future Automated Aircraft Assembly Demonstrator

    No full text
    Part 4: Digital Technologies and Industry 4.0 ApplicationsInternational audienceAs part of the Future Automated Aircraft Assembly Demonstrator developed by the University of Nottingham, this paper presents a new flexible production environment for the complete manufacturing of high-accuracy high-complexity low-volume aerospace products. The aim is to design a product-independent manufacturing and assembly system that can react to fluctuating product specifications and demands through self-reconfiguration. This environment features a flexible, holistic, and context-aware solution that includes automated positioning, drilling and fastening processes, and is suitable for different aircraft structures with scope to address other manufacturing domains in the future (e.g. automotive, naval and energy). The assembly cell features industrial robots for the handling of aircraft components, while intelligent metrology and control systems monitor the cell to ensure that the assembly process is safe and the target tolerances are met. These three modules are integrated into a single standardized interface, requiring only one operator to control the cell. Performance analyses have shown that, using the reconfigurable production environment described hereafter, a positioning accuracy better than ±0.1 mm can be achieved for large airframe components
    corecore