5 research outputs found
Above- and below-ground litter production in three tropical montane forests in southern Ecuador
Litter production from above-ground (leaves, twigs, fruits, flowers) and below-ground (roots) plant organs is an important component of the cycling of carbon and nutrients in forests. Tropical montane forests possess comparatively large quantities of fine-root biomass, suggesting that litter production by dying fine roots may represent a major component of total litter production. In a comparative study in three tropical montane forests of southern Ecuador at 18 90, 2380 and 3060 m elevation, we measured leaf-fall by litter trapping and fine-root litter production by sequential soil coring and fine-root biomass and necromass analysis for about 1 y with the objectives (1) to quantify annual above- and below-ground litter production, and (2) to investigate elevational differences in litter production. Leaf litter mass decreased to less than a third (862 to 263 g m(-2) y(-1)) with increasing elevation (1890 m to 3060 m), whereas fine-root litter production increased by a factor of about four (506 to 2084 g m-2 y(-1)). Thus, the ratio of leaf to fine-root litter shifted by an order of magnitude in favour of fine-root litter production between 1.890 to 3060 m. Fine-root litter production was not synchronized with leaf litterfall and was seasonal only at 3060 m with mortality peaks in the drier and the wetter periods. We conclude that dying fine roots represent a very important fraction of total litterfall in tropical montane forests that can exceed the quantity of leaf litter. At 3060 m, the largest part of the organic material on top of the soil must originate from dying fine roots but not from fallen leaves
Effect of disturbance on biomass, production and carbon dynamics in moist tropical forest of eastern Nepal
Temporal variation in abundance of leaf litter beetles and ants in an Australian lowland tropical rainforest is driven by climate and litter fall
Determining if the seasonality of leaf litter invertebrate populations in tropical rainforests is driven by climate or availability of litter, or both, is important to more accurately predict the vulnerability of litter invertebrates to climate change. Here we used two approaches to disentangle these effects. First, the influence of climatic seasonality was quantified by sampling a fixed volume of litter monthly over 4 years and counting extracted beetles and ants. Second, litter volume was experimentally manipulated (addition and exclusion) to test the influence of litter quantity independently of climatic variation. There were significant seasonal peaks for both beetle and ant abundance and these were positively correlated with rainfall, temperature and litter volume. As abundance was measured on a ‘per litter volume’ basis we conclude that there was a significant effect of climate on abundance. The litter manipulation experiment showed that beetle and ant abundance per litter volume were also influenced by litter volume, when it was low. We recognise that other factors such as litter structure or complexity may have affected temporal ant abundance. Beetle and ant abundance were depressed in litter exclusion plots but did not differ significantly between control and addition plots, suggesting a possible ceiling in the effect of litter volume on population sizes. We conclude that seasonality in climate and litter quantity are driving most temporal variation in insect abundance and that there may be some resilience among leaf litter insects to cope with higher temperatures. However, future responses by plants to increased climatic variability and higher CO2 concentrations may alter litter fall dynamics and thus temporal patterns in litter insect abundances.Full Tex
Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests
Mangrove forest restoration and rehabilitation
We analyzed current best practices and recommendations used in the implementation of mangrove rehabilitation and restoration (R/R) projects in the Atlantic-East Pacific (AEP) and the Indo-West Pacific biogeographic regions during the last 20 years. Comprehensive literature and World Wide Web searches were performed identifying 90 sites around the world where R/R actions have been implemented. For each site, we analyzed the sources of damage/impact and classified the origin as natural (siltation, erosion, the direct and indirect effect of tropical storms or tsunamis) or anthropogenic (pollution, land use policies, overharvesting, aquaculture, altered hydrology and hydroperiod). In most cases, the causes of damage were a complex mixture associated to erosion, hydrological impairment, deforestation, siltation, and land conversion for aquaculture and other land uses. The area extension of mangrove sites undergoing restoration or just afforestation ranged from few square meters to several thousand hectares. Numerous projects were implemented without an underlying science-based approach and were often ill-prepared and unsuccessful. Although there is no “one-size-fits-all” solution to restore or rehabilitate mangrove wetlands, published studies (particularly peer reviewed) provide useful insights into designing R/R projects with clearly defined and prioritized management objectives based on a diagnostic of the source of damage/deterioration. A critical step is to develop a decision tree that serves as a guide to optimize the use of available funding in the development, implementation, and monitoring of R/R protocols to set clear objectives, goals and deadlines. These steps should be part of a robust research agenda based on sound ecological theory and reliable monitoring practices, including the participation of local communities. Any monitoring and reporting program should address spatial and temporal replication that explicitly includes reference sites near the target restoration site. The results of each R/R project, whether successful or not, should be published, as they are critical sources of data and information for further development of mangrove R/R practices and methods within the community of restoration ecology science. We urge the continental level implementation of guidelines to advance international initiatives aimed to protect and conserve one the most productive and threatened coastal ecosystems in the world.SCOPUS: ch.binfo:eu-repo/semantics/publishe
