20 research outputs found
Locally Resolved Membrane Binding Affinity of the N-Terminus of α-Synuclein
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson’s disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein–membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonunifor
Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces
Knowing the topology and location of protein segments at water–membrane interfaces is critical for rationalizing their functions, but their characterization is challenging under physiological conditions. Here, we debut a unique spectroscopic approach by using the hydration dynamics gradient found across the phospholipid bilayer as an intrinsic ruler for determining the topology, immersion depth, and orientation of protein segments in lipid membranes, particularly at water–membrane interfaces. This is achieved through the site-specific quantification of translational diffusion of hydration water using an emerging tool, (1)H Overhauser dynamic nuclear polarization (ODNP)-enhanced NMR relaxometry. ODNP confirms that the membrane-bound region of α-synuclein (αS), an amyloid protein known to insert an amphipathic α-helix into negatively charged phospholipid membranes, forms an extended α-helix parallel to the membrane surface. We extend the current knowledge by showing that residues 90–96 of bound αS, which is a transition segment that links the α-helix and the C terminus, adopt a larger loop than an idealized α-helix. The unstructured C terminus gradually threads through the surface hydration layers of lipid membranes, with the beginning portion residing within 5–15 Å above the phosphate level, and only the very end of C terminus surveying bulk water. Remarkably, the intrinsic hydration dynamics gradient along the bilayer normal extends to 20–30 Å above the phosphate level, as demonstrated with a peripheral membrane protein, annexin B12. ODNP offers the opportunity to reveal previously unresolvable structure and location of protein segments well above the lipid phosphate, whose structure and dynamics critically contribute to the understanding of functional versatility of membrane proteins
alpha-Synuclein Oligomers: an Amyloid Pore? : Insights into Mechanisms of alpha-Synuclein Oligomer-Lipid Interactions
Item does not contain fulltextIn many human diseases, oligomeric species of amyloid proteins may play a pivotal role in cytotoxicity. Many lines of evidence indicate that permeabilization of cellular membranes by amyloid oligomers may be the key factor in disrupting cellular homeostasis. However, the exact mechanisms by which the membrane integrity is impaired remain elusive. One prevailing hypothesis, the so-called amyloid pore hypothesis, assumes that annular oligomeric species embed into lipid bilayers forming transbilayer protein channels. Alternatively, an increased membrane permeability could be caused by thinning of the hydrophobic core of the lipid bilayer due to the incorporation of the oligomers between the tightly packed lipids, which would facilitate the transport of small molecules across the membrane. In this review, we briefly recapitulate our findings on the structure of alpha-synuclein oligomers and the factors influencing their interaction with lipid bilayers. Our results, combined with work from other groups, suggest that alpha-synuclein oligomers do not necessarily form pore-like structures. The emerging consensus is that local structural rearrangements of the protein lead to insertion of specific regions into the hydrophobic core of the lipid bilayer, thereby disrupting the lipid packing