33 research outputs found

    On the socio-technical potential for onshore wind in Europe : a response to Enevoldsen et al. (2019), Energy Policy, 132, 1092-1100

    Get PDF
    Acknoweldgements: S.W. and J.S. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (reFUEL, grant agreement No. 758149). J.L. and T.T. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 715132).Peer reviewedPostprin

    High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs

    Get PDF
    The rapid uptake of renewable energy technologies in recent decades has increased the demand of energy researchers, policymakers and energy planners for reliable data on the spatial distribution of their costs and potentials. For onshore wind energy this has resulted in an active research field devoted to analysing these resources for regions, countries or globally. A particular thread of this research attempts to go beyond purely technical or spatial restrictions and determine the realistic, feasible or actual potential for wind energy. Motivated by these developments, this paper reviews methods and assumptions for analysing geographical, technical, economic and, finally, feasible onshore wind potentials. We address each of these potentials in turn, including aspects related to land eligibility criteria, energy meteorology, and technical developments of wind turbine characteristics such as power density, specific rotor power and spacing aspects. Economic aspects of potential assessments are central to future deployment and are discussed on a turbine and system level covering levelized costs depending on locations, and the system integration costs which are often overlooked in such analyses. Non-technical approaches include scenicness assessments of the landscape, constraints due to regulation or public opposition, expert and stakeholder workshops, willingness to pay/accept elicitations and socioeconomic cost-benefit studies. For each of these different potential estimations, the state of the art is critically discussed, with an attempt to derive best practice recommendations and highlight avenues for future research

    Power to Gas: Netzzugangsmodelle und Marktdesign

    No full text
    Das zukünftige Energiesystem ist durch einen hohen Anteil an erneuerbaren Energien (EE) geprägt, welche sowohl positive als auch negative Residuallasten nach sich ziehen. Unter dem Begriff „Power to gas“ versteht man die Wandlung von Wasser in Wasserstoff und Sauerstoff mittels Elektrolyse und unter Einsatz insbesondere regenerativ erzeugten Stroms. Dieser Wasserstoff kann beispielsweise im Verkehrssektor oder der chemischen Industrie direkt genutzt bzw. methanisiert werden. Der Nutzungspfad des Wasserstoffes bestimmt somit das zukünftig notwendige Markdesign. Als methanisierter Wasserstoff ist der bestehende Erdgasmarkt zu adressieren. Dieser Markt wird beschrieben und es wird auf weiterführende Literatur verwiesen. Für die Nutzung des Wasserstoffs im Verkehrssektor ist ein neues Marktdesign, welches sich an den bestehenden Netzzugangsmodellen orientiert, zu entwickeln. Die möglichen Modelle werden daher anhand ihrer Vor-und Nachteile miteinander verglichen und die Modelle je nach Entwicklungsphase der Wasserstoffinfrastruktur ausgewählt

    Optimized electrolyzer operation: Employing forecasts of wind energy availability, hydrogen demand, and electricity prices

    No full text
    One of the main advantages of fuel cell based mobility over other sustainable mobility concepts is the flexible production of hydrogen via electrolysis. To date, it is unclear how electrolysis at hydrogen refueling stations should be operated in order to achieve the lowest possible costs despite the constraints of hydrogen demand. This study proposes and evaluates an intelligent operating strategy for electrolysis capable of exploiting times of low electricity prices while participating in the spot market and maximizing wind energy utilization when combined with a wind farm. This strategy is based on a simulation model considering imperfect forecasts (e.g. of wind availability or energy prices) and non-linear electrolyzer behavior. Results show that this approach reduces hydrogen production costs by up to 9.2% and increases wind energy utilization by up to 19%, respectively
    corecore