4,806 research outputs found

    Hydrodynamic modelling of ejecta shrapnel in the Vela supernova remnant

    Get PDF
    Many supernova remnants (SNRs) are characterized by a knotty ejecta structure. The Vela SNR is an excellent example of remnant in which detached clumps of ejecta are visible as X-ray emitting bullets that have been observed and studied in great detail. We aim at modelling the evolution of ejecta shrapnel in the Vela SNR, investigating the role of their initial parameters (position and density) and addressing the effects of thermal conduction and radiative losses. We performed a set of 2-D hydrodynamic simulations describing the evolution of a density inhomogeneity in the ejecta profile. We explored different initial setups. We found that the final position of the shrapnel is very sensitive to its initial position within the ejecta, while the dependence on the initial density contrast is weaker. Our model also shows that moderately overdense knots can reproduce the detached features observed in the Vela SNR. Efficient thermal conduction produces detectable effects by determining an efficient mixing of the ejecta knot with the surrounding medium and shaping a characteristic elongated morphology in the clump.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Magnetohydrodynamic Turbulent Cascade of Coronal Loop Magnetic Fields

    Full text link
    The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy E_M (k_perp) \propto k_\perp^{-2.7} exceeds kinetic energy E_K (k_\perp) \propto k_\perp^{-0.6}. Increments scale as \delta b_\ell \simeq \ell^{-0.85} and \delta u_\ell \simeq \ell^{+0.2} with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.Comment: 5 pages, 5 figures, to appear in Physical Review E - Rapid. Com

    X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?

    Full text link
    This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV and UV flux from Venus dark side. As a check we have also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT in 2006. We have used the latest version of the Hinode/XRT Point Spread Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove possible instrumental scattering. Even after deconvolution, the flux from Venus shadow remains significant while in the case of Mercury it becomes negligible. Since stray-light contamination affects the XRT Ti-poly filter data from the Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter data, which is not affected by the light leak. Even the Al-mesh filter data show residual flux. We have also found significant EUV (304 A, 193 A, 335 A) and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV emission from Venus dark side is reduced when appropriate deconvolution methods are applied; the emission remains significant, however. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to the average flux of the solar regions around Venus obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest it may be due to scatter occurring in the very long magnetotail of Venus.Comment: This paper has been accepted in The Astrophysical Journa

    Spatial identification of the overionized plasma in W49B

    Get PDF
    Recent Suzaku X-ray observations of the ejecta-dominated supernova remnant W49B have shown that in the global spectrum there is a clear indication for the presence of overionized plasma whose physical origin is still under debate. In order to ascertain the physical origin of such a rapidly cooling plasma, we focus on the study of its spatial localization within the X-ray emitting ejecta. We confirm the presence of a saw-edged excess (interpreted as a strong radiative recombination continuum) in the global spectrum above 8 keV, emerging above the ionization-equilibrium model. We produce a hardness ratio map to determine where the plasma is overionized and we perform a spectral analysis of the regions with and without strong overionization. We find that the overionized plasma is localized in the center of the remnant and in its western jet, while it is not detected in the bright eastern jet, where the expansion of the ejecta is hampered by their interaction with a dense interstellar cloud. The location of overionized plasma suggests that the inner ejecta are rapidly cooling by expansion, unlike the outer ejecta, for which expansion is hampered by interstellar clouds seen in H2Comment: Accepted for publication as a Letter in Astronomy and Astrophysics

    Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT

    Get PDF
    The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to detect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.Comment: 6 pages, 4 figure

    X-ray flares on the UV Ceti-type star CC Eridani: a "peculiar" time-evolution of spectral parameters

    Full text link
    Context: Weak flares are supposed to be an important heating agent of the outer layers of stellar atmospheres. However, due to instrumental limitations, only large X-ray flares have been studied in detail until now. Aims: We used an XMM-Newton observation of the very active BY-Dra type binary star CC Eri in order to investigate the properties of two flares that are weaker than those typically studied in the literature. Methods: We performed time-resolved spectroscopy of the data taken with the EPIC-PN CCD camera. A multi-temperature model was used to fit the spectra. We inferred the size of the flaring loops using the density-temperature diagram. The loop scaling laws were applied for deriving physical parameters of the flaring plasma. We also estimated the number of loops involved in the observed flares. Results: A large X-ray variability was found. Spectral analysis showed that all the regions in the light curve, including the flare segments, are well-described by a 3-T model with variable emission measures but, surprisingly, with constant temperatures (values of 3, 10 and 22 MK). The analysed flares lasted ~ 3.4 and 7.1 ks, with flux increases of factors 1.5-1.9. They occurred in arcades made of a few tens of similar coronal loops. The size of the flaring loops is much smaller than the distance between the stellar surfaces in the binary system, and even smaller than the radius of each of the stars. The obtained results are consistent with the following ideas: (i) the whole X-ray light curve of CC Eri could be the result of a superposition of multiple low-energy flares, and (ii) stellar flares can be scaled-up versions of solar flares.Comment: 14 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited: the UV line emission

    Get PDF
    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \FeXXI 1354.1 \AA line observed with the UVSP) fails to model the flux level and evolution of the \OV 1371.3 \AA line.Comment: A&A, in press, 6 pages, 5 figure

    Comparison of Hinode/XRT and RHESSI detection of hot plasma in the non-flaring solar corona

    Full text link
    We compare observations of the non-flaring solar corona made simultaneously with Hinode/XRT and with RHESSI. The analyzed corona is dominated by a single active region on 12 November 2006. The comparison is made on emission measures. We derive emission measure distributions vs temperature of the entire active region from multifilter XRT data. We check the compatibility with the total emission measure values estimated from the flux measured with RHESSI if the emission come from isothermal plasma. We find that RHESSI and XRT data analyses consistently point to the presence of a minor emission measure component peaking at log T ~ 6.8-6.9. The discrepancy between XRT and RHESSI results is within a factor of a few and indicates an acceptable level of cross-consistency.Comment: 12 pages, 3 figures, Letter accepted for publicatio
    corecore