49 research outputs found

    Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring

    Get PDF
    Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system

    Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

    Get PDF
    Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity

    Evaluation of physiological and behavioral measures in relation to dental anxiety during sequential dental visits in children

    No full text
    Anxiety is a special variety of fear, experienced in anticipation of threatening stimuli. While some research workers have said that the response of a child improves with the number of visits, many have felt otherwise. The present study is yet another effort to find the patterns of anxiety in children during sequential dental visits. The main aim was to determine the physiological and behavioral variations during sequential dental visits and its impact on age and sex. The study was conducted at the outpatient Department of Pedodontics and preventive dentistry, Meenakshi Ammal Dental College and Hospital, Chennai to evaluate the physiological and behavioural measures of stress and anxiety in children. One hundred and fifteen children, between four and eleven years of age who reported for dental treatment were selected for the study

    Management of an impacted and transposed maxillary canine

    No full text
    Maxillary canine-lateral incisor transposition is a relatively rare anomaly, with both dental and facial esthetic implications. This is a case report of a maxillary canine-lateral incisor transposition that was successfully treated by surgical-orthodontic treatment followed by esthetic reshaping of the involved teeth

    Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring.

    No full text
    International audienceDepression during pregnancy and postpartum is a significant health problem and affects up to 20% of women. While selective serotonin reuptake inhibitor (SSRI) medications are the drug of choice for treatment of maternal depression, the combined effect of maternal depression and perinatal SSRI exposure on offspring development is poorly investigated. Our aim was to determine the role of exposure to fluoxetine during development on sexual behavior and sexually dimorphic brain structures in male offspring using a rodent model of maternal adversity. Sprague-Dawley rat dams were stressed during gestation and were chronically treated throughout lactation with either fluoxetine or vehicle beginning on postnatal day 1. Four groups of offspring were used: (1) Control+Vehicle, (2) Control+Fluoxetine, (3) Prenatal Stress+Vehicle, and (4) Prenatal Stress+Fluoxetine. We show here that developmental fluoxetine treatment decreases the anogenital distance in juvenile male offspring. In adult male offspring, maternal fluoxetine treatment results in a decrease in the number of intromissions, a longer latency to the first intromission, and a longer latency to the first ejaculation. Furthermore, developmental fluoxetine and/or prenatal stress decrease the area of the sexually dimorphic nucleus of the preoptic area (SDN-POA). Prenatal stress, but not exposure to developmental fluoxetine, decreases the number of tyrosine hydroxylase (TH)-positive cells in anteroventral periventricular nucleus (AVPv) and the volume of the posterior bed nucleus of the stria terminalis (pBST) in male offspring. These results provide important evidence for the long-term impact of maternal adversity and maternal fluoxetine use on the development of primary endocrinology systems in juvenile and adult male offspring

    Developmental fluoxetine exposure facilitates sexual behavior in female offspring.

    No full text
    International audienceA growing number of infants are being exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. SSRIs target the serotoninergic system and are a popular treatment for maternal mood disorders. Serotonin itself plays a key role in the sexual differentiation through its role in the development of the hypothalamic-pituitary-gonadal axis, and previous research has shown that developmental SSRI exposure has an effect on sexual behavior in male offspring. Our aim was to determine the role of developmental exposure to a popular SSRI medication, fluoxetine, on sexual differentiation of the brain and behavior in female offspring using a rodent model of maternal adversity. Stressed and non-stressed Sprague-Dawley rat dams were chronically treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1. Four groups of female offspring were used: (1) control + vehicle, (2) control + fluoxetine, (3) prenatal stress + vehicle, and (4) prenatal stress + fluoxetine. Primary results show that in adult female offspring, developmental fluoxetine exposure facilitates proceptive and receptive behaviors with a significant increase in the number of proceptive behaviors, a significant increase in the lordosis quotient, and a significant decrease in the rejection quotient. This research contributes in the understanding of the long-term impact developmental fluoxetine exposure on the hypothalamus-pituitary-gonadal (HPG) system in adult female offspring

    The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination

    No full text
    The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems

    Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams

    No full text
    Women are more likely to develop depression during childbearing years with up to 20% of women suffering from depression during pregnancy and in the postpartum period. Increased prevalence of depression during the perinatal period has resulted in frequent selective serotonin reuptake inhibitor (SSRI) antidepressant treatment; however the effects of such medications on the maternal brain remain limited. Therefore, the aim of the present study is to investigate the effects of the SSRI medication, fluoxetine, on neurobiological differences in the maternal brain. To model aspects of maternal depression, gestational stress was used. Sprague-Dawley rat dams were exposed to either gestational stress and/or fluoxetine (5 mg/kg/day) to form the following four groups: 1. Control + Vehicle, 2. Stress + Vehicle, 3. Control + Fluoxetine, and 4. Stress + Fluoxetine. At weaning maternal brains were collected. Main findings show that gestational stress alone increased synaptophysin and serotonin metabolism in the cingulate cortex2 region of the cortex while fluoxetine treatment after stress normalized these effects. In the hippocampus, fluoxetine treatment, regardless of gestational stress exposure, decreased both global measures of methylation in the dentate gyrus, as measured by Dnmt3a immunoreactivity, as well as serotonin metabolism. No further changes in synaptophysin, PSD-95, or Dnmt3a immunoreactivity were seen in the cortical or hippocampal areas investigated. These findings show that gestational stress and SSRI medication affect the neurobiology of the maternal brain in a region-specific manner. This work adds to a much needed area of research aimed at understanding neurobiological changes associated with maternal depression and the role of SSRI treatment in altering these changes in the female brain. © 2016 IBRO
    corecore