479 research outputs found

    Magnetocapacitance effect in perovskite-superlattice based multiferroics

    Full text link
    We report the structural and magnetoelectrical properties of La0.7_{0.7}Ca0.3_{0.3}MnO3_3/BaTiO3_3 perovskite superlattices grown on (001)-oriented SrTiO3_3 by the pulsed laser deposition technique. Magnetic hysteresis loops together with temperature dependent magnetic properties exhibit well-defined coercivity and magnetic transition temperature (TC_C) \symbol{126}140 K. DCDC electrical studies of films show that the magnetoresistance (MR) is dependent on the BaTiO3_3 thickness and negative MRMR as high as 30% at 100K are observed. The ACAC electrical studies reveal that the impedance and capacitance in these films vary with the applied magnetic field due to the magnetoelectrical coupling in these structures - a key feature of multiferroics. A negative magnetocapacitance value in the film as high as 3% per tesla at 1kHz and 100K is demonstrated, opening the route for designing novel functional materials.Comment: To be published in Applied Physics Letter

    Magnetic-history-dependent nanostructural and resistivity changes in Pr0.5Ca0.5Mn0.98Cr0.02O3

    Full text link
    We show that nanostructure and resistivity of Pr0.5Ca0.5Mn0.98Cr0.02O3 are sensitive to whether the sample is zero-field-cooled (ZFC) of field-cooled (FC) either in the 'self magnetic field (H = 2 T)' of the electron microscope or under the external magnetic field of 2 T. FC resistivity at H = 2 T is lower than ZFC values below 140 K. The average value of the chare-orbital modulation vector (q = 0.44) of the FC crystallites is lower than that of the ZFC cystallites (q = 0.48) and the FC crystallites exhibit numerous defects like discommensuration, dislocations and regios with loss of superstructures compared to the ZFC crystallites.Comment: 7 pages, 3 figure

    Effect of ferroelectric layers on the magnetocapacitance properties of superlattices-based oxide multiferroics

    Full text link
    A series of superlattices composed of ferromagnetic La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO) and ferroelectric/paraelectric Ba1−x_{1-x}Srx_xTiO3_3 (0≤\leq x≤\leq 1) were deposited on SrTiO3_3 substrates using the pulsed laser deposition. Films of epitaxial nature comprised of spherical mounds having uniform size are obtained. Magnetotransport properties of the films reveal a ferromagnetic Curie temperature in the range of 145-158 K and negative magnetoresistance as high as 30%, depending on the type of ferroelectric layers employed for their growth (\QTR{it}{i.e.} '\QTR{it}{x'} value). Ferroelectricity at temperatures ranging from 55 K to 105 K is also observed, depending on the barium content. More importantly, the multiferroic nature of the film is determined by the appearance of negative magnetocapacitance, which was found to be maximum around the ferroelectric transition temperature (3% per \QTR{it}{tesla}). These results are understood based on the role of the ferroelectric/paraelectric layers and strains in inducing the multiferroism.Comment: Accepted to Applied Physics Letter

    The role of ferroelectric-ferromagnetic layers on the properties of superlattice-based multiferroics

    Full text link
    A series of superlattices and trilayers composed of ferromagnetic and ferroelectric or paraelectric layers were grown on (100) SrTiO3 by the pulsed laser deposition technique. Their structural and magneto-electric properties were examined. The superlattices made of ferromagnetic Pr0.85Ca0.15MnO3 (PCMO) and a ferroelectric, namely Ba0.6Sr0.4TiO3 (BST) or BaTiO3, showed enhanced magnetoresistance (MR) at high applied magnetic field, whereas such enhancement was absent in Pr0.85Ca0.15MnO3/SrTiO3 superlattices, which clearly demonstrates the preponderant role of the ferroelectric layers in this enhanced MR. Furthermore, the absence of enhanced MR in trilayers of PCMO/BST indicates that the magneto-electric coupling which is responsible for MR in these systems is stronger in multilayers than in their trilayer counterparts.Comment: to be published in J. Appl. Phy

    Rhodium Doped Manganites : Ferromagnetism and Metallicity

    Get PDF
    The possibility to induce ferromagnetism and insulator to metal transitions in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown for the first time. Colossal magnetoresistance (CMR) properties are evidenced for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to induce such properties is compared to the results obtained by chromium and ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure

    Correlation between structure and properties in multiferroic La0.7_{0.7}Ca0.3_{0.3}MnO3_3/BaTiO3_3 superlattices

    Full text link
    Superlattices composed of ferromagnetics, namely La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO), and ferroelectrics, namely, BaTiO3_3(BTO) were grown on SrTiO3_3 at 720o^oC by pulsed laser deposition process. While the out-of-plane lattice parameters of the superlattices, as extracted from the X-ray diffraction studies, were found to be dependent on the BTO layer thickness, the in-plane lattice parameter is almost constant. The evolution of the strains, their nature, and their distribution in the samples, were examined by the conventional sin2ψ^2\psi method. The effects of structural variation on the physical properties, as well as the possible role of the strain on inducing the multiferroism in the superlattices, have also been discussed.Comment: To be published in Journal of Applied Physic
    • …
    corecore