391 research outputs found

    Superbalance of holographic entropy inequalities

    Get PDF
    The domain of allowed von Neumann entropies of a holographic field theory carves out a polyhedral cone — the holographic entropy cone — in entropy space. Such polyhedral cones are characterized by their extreme rays. For an arbitrary number of parties, it is known that the so-called perfect tensors are extreme rays. In this work, we constrain the form of the remaining extreme rays by showing that they correspond to geometries with vanishing mutual information between any two parties, ensuring the absence of Bell pair type entanglement between them. This is tantamount to proving that besides subadditivity, all non-redundant holographic entropy inequalities are superbalanced, i.e. not only do UV divergences cancel in the inequality itself (assuming smooth entangling surfaces), but also in the purification thereof

    The eightfold way to dissipation

    Full text link
    We provide a complete characterization of hydrodynamic transport consistent with the second law of thermodynamics at arbitrary orders in the gradient expansion. A key ingredient in facilitating this analysis is the notion of adiabatic hydrodynamics, which enables isolation of the genuinely dissipative parts of transport. We demonstrate that most transport is adiabatic. Furthermore, of the dissipative part, only terms at the leading order in gradient expansion are constrained to be sign-definite by the second law (as has been derived before).Comment: 5 pages, 1 figure. v2: minor clarifications. v3: minor changes. title in published version differ

    Schwinger-Keldysh formalism II: Thermal equivariant cohomology

    Get PDF
    Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our companion paper arXiv:1610.01940. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a basic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general principles, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.Comment: 72 pages; v2: fixed typos. v3: minor clarifications and improvements to non-equilbirum work relations discussion. v4: typos fixed. published versio

    Paradoxical signaling regulates structural plasticity in dendritic spines

    Full text link
    Transient spine enlargement (3-5 min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium-influx due to NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks and their role is to control both the activation and inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion including CaMKII, RhoA, and Cdc42 and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics

    Thermal out-of-time-order correlators, KMS relations, and spectral functions

    Get PDF
    We describe general features of thermal correlation functions in quantum systems, with specific focus on the fluctuation-dissipation type relations implied by the KMS condition. These end up relating correlation functions with different time ordering and thus should naturally be viewed in the larger context of out-of-time-ordered (OTO) observables. In particular, eschewing the standard formulation of KMS relations where thermal periodicity is combined with time-reversal to stay within the purview of Schwinger-Keldysh functional integrals, we show that there is a natural way to phrase them directly in terms of OTO correlators. We use these observations to construct a natural causal basis for thermal n-point functions in terms of fully nested commutators. We provide several general results which can be inferred from cyclic orbits of permutations, and exemplify the abstract results using a quantum oscillator as an explicit example.Comment: 36 pages + appendices. v2: minor changes + refs added. v3: minor changes, published versio

    Comments on Hall transport from effective actions

    Get PDF
    We consider parity-odd transport in 2+1 dimensional charged fluids restricting attention to the class of non-dissipative fluids. We show that there is a two parameter family of such non-dissipative fluids which can be derived from an effective action, in contradistinction with a four parameter family that can be derived from an entropy current analysis. The effective action approach allows us to extract the adiabatic transport data, in particular the Hall viscosity and Hall conductivity amongst others, in terms of the thermodynamic functions that enter as ‘coupling constants’. Curiously, we find that Hall viscosity is forced to vanish, whilst the Hall conductivity is generically a non-vanishing function of thermodynamic data determined in terms of the hydrodynamic couplings
    • …
    corecore