54 research outputs found

    High carriage rate of high-level penicillin-resistant Streptococcus pneumoniae in a Taiwan kindergarten associated with a case of pneumococcal meningitis

    Get PDF
    BACKGROUND: The Taiwan(19F)-14 Streptococcus pneumoniae clone and its variants are being found with increasing frequency in the Asia-Pacific region. A 5-year old child with S. pneumoniae meningitis caused by a high-level penicillin resistant strain (MIC = 4 μg/ml) was admitted to a hospital in southern Taiwan. We carried out a study to determine the potential source of this strain. METHODS: Nasopharyngeal cultures were obtained from all children attending the same kindergarten as the index case. To determine their relatedness all isolates were compared by serotype, antimicrobial susceptibility profile and pulsed field gel electrophoresis (PFGE). RESULTS: A high proportion of the children including the index case (32/78, 41.0%) carried S. pneumoniae in their nasopharynx (NP). The most common serotype was 19F (13/32, 40.6%). The PFGE types of the 19F serotype isolates obtained from the patient's blood, CSF and NP were identical and were related to 11 other serotype 19F NP isolates including 10 that were indistinguishable from the Taiwan(19F)-14 clone. All 14 isolates had similar high-level penicillin and multi-drug resistance. The serotypes of the other 19 NP isolates included 6A (2), 6B (10), 23F (5), 9V (1) and 3 (1). The overall rate of penicillin resistance in these S. pneumoniae from these children was 87.5% (28/32), with an MIC(50 )of 2 and MIC(90 )of 4 ug/ml. In addition, multi-drug resistant-isolates (isolates resistant to 3 different classes of antimicrobials) accounted for 87.5% (28/32) of all isolates. CONCLUSION: The high carriage rate of high-level penicillin- and multi-drug- resistant S. pneumoniae in a kindergarten associated with a case of pneumococcal meningitis emphasizes the need for restraint in antibiotic use and consideration of childhood immunization with conjugate pneumococcal vaccine to prevent the further spread of resistant S. pneumoniae in Taiwan

    Understanding Influenza

    Get PDF
    Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader’s own research will help us to understand it better
    corecore