75,694 research outputs found

    Around Kolmogorov complexity: basic notions and results

    Full text link
    Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-L\"of randomness, Mises--Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author

    Towards Informative Statistical Flow Inversion

    Get PDF
    This is the accepted version of 'Towards Informative Statistical Flow Inversion', archived originally at arXiv:0705.1939v1 [cs.NI] 14 May 2007.A problem which has recently attracted research attention is that of estimating the distribution of flow sizes in internet traffic. On high traffic links it is sometimes impossible to record every packet. Researchers have approached the problem of estimating flow lengths from sampled packet data in two separate ways. Firstly, different sampling methodologies can be tried to more accurately measure the desired system parameters. One such method is the sample-and-hold method where, if a packet is sampled, all subsequent packets in that flow are sampled. Secondly, statistical methods can be used to ``invert'' the sampled data and produce an estimate of flow lengths from a sample. In this paper we propose, implement and test two variants on the sample-and-hold method. In addition we show how the sample-and-hold method can be inverted to get an estimation of the genuine distribution of flow sizes. Experiments are carried out on real network traces to compare standard packet sampling with three variants of sample-and-hold. The methods are compared for their ability to reconstruct the genuine distribution of flow sizes in the traffic

    High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, [VOL 7, ISSUE 4, (2001)] DOI: 10.1016/j.actbio.2010.11.03

    Invertibility in groupoid C*-algebras

    Full text link
    Given a second-countable, Hausdorff, \'etale, amenable groupoid G with compact unit space, we show that an element a in C*(G) is invertible if and only if \lambda_x(a) is invertible for every x in the unit space of G, where \lambda_x refers to the "regular representation" of C*(G) on l_2(G_x). We also prove that, for every a in C*(G), there exists some x in G^{(0)} such that ||a|| = ||\lambda_x(a)||.Comment: 8 page

    SYM, Chern-Simons, Wess-Zumino Couplings and their higher derivative corrections in IIA Superstring theory

    Get PDF
    We find the entire form of the amplitude of two fermion strings (with different chirality), a massless scalar field and one closed string Ramond-Ramond (RR) in IIA superstring theory which is different from its IIB one. We make use of a very particular gauge fixing and explore several new couplings in IIA. All infinite uu- channel scalar poles and t,st,s- channel fermion poles are also constructed. We find new form of higher derivative corrections to two fermion two scalar couplings and show that the first simple (s+t+u)−(s+t+u)- channel scalar pole for p+2=np+2=n case can be obtained by having new higher derivative corrections to SYM couplings at third order of α′\alpha'. We find that the general structure and the coefficients of higher derivative corrections to two fermion two scalar couplings are completely different from the derived α′\alpha' higher derivative corrections of type IIB.Comment: 29 pages, no figure,Latex file,published version in EPJ

    Dust penetrated morphology in the high redshift Universe

    Full text link
    Images from the Hubble Deep Field (HDF) North and South show a large percentage of dusty, high redshift galaxies whose appearance falls outside traditional classification systems. The nature of these objects is not yet fully understood. Since the HDF preferentially samples restframe UV light, HDF morphologies are not dust or `mask' penetrated. The appearance of high redshift galaxies at near-infrared restframes remains a challenge for the New Millennium. The Next Generation Space Telescope (NGST) could routinely provide us with such images. In this contribution, we quantitatively determine the dust-penetrated structures of high redshift galaxies such as NGC 922 in their near-infrared restframes. We show that such optically peculiar objects may readily be classified using the dust penetrated z ~ 0 templates of Block and Puerari (1999) and Buta and Block (2001).Comment: 4 pages, 2 figures. Presented at the conference "The Link between Stars and Cosmology", 26-30 March, 2001, Puerto Vallarta, Mexico. To be published by Kluwer, eds. M. Chavez, A. Bressan, A. Buzzoni, and D. Mayya. High-resolution version of Figure 2 can be found at http://www.inaoep.mx/~puerari/conf_puertovallart

    The Hardness of Embedding Grids and Walls

    Full text link
    The dichotomy conjecture for the parameterized embedding problem states that the problem of deciding whether a given graph GG from some class KK of "pattern graphs" can be embedded into a given graph HH (that is, is isomorphic to a subgraph of HH) is fixed-parameter tractable if KK is a class of graphs of bounded tree width and W[1]W[1]-complete otherwise. Towards this conjecture, we prove that the embedding problem is W[1]W[1]-complete if KK is the class of all grids or the class of all walls
    • …
    corecore