4,262 research outputs found

    Complete mitochondrial DNA sequence of the parasitic honey bee mite Varroa destructor (Mesostigmata : Varroidae)

    Get PDF
    Varroa destructor is a parasite mite of the eastern honey bee Apis cerana, which is native to Asia. The European honey bee Apis mellifera was imported to Asia from Europe and the USA for apiculture in the 19th century. In a short period of time, V. destructor parasitized the artificially introduced honey bees. Varroa destructor was estimated to have spread around the world with A. mellifera when it was exported from Asia to locations worldwide about 50 years ago. The mitochondrial DNA of the parasitic honey bee mite V. destructor was analyzed using next-generation sequencing. The complete mitochondrial genome of V. destructor was identified as a 16,476-bp circular molecule containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and one AT-rich control region. The heavy strand was predicted to have nine PCGs and 13 tRNA genes, whereas the light strand was predicted to contain four PCGs, nine tRNA genes, and two rRNA genes. All PCGs began with ATA as the start codon, except COIII and CytB, which had ATG as the start codon. Stop codons were of two types: TAA for eight genes and TAG for five genes. Molecular phylogenetic analysis revealed that V. destructor from Japan was genetically distant from that of France. A high base substitution rate of 2.82% was also confirmed between the complete mitochondrial DNA sequences of V. destructor from Japan and the USA, suggesting that one Varroa mite strain found in the USA is not from Japan

    Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10)×S4SO(10)\times S_4

    Full text link
    If left-right gauge theory occurs as an intermediate symmetry in a GUT then, apart from other advantages, it is possible to obtain the see-saw scale necessary to understand small neutrino masses with Majorana coupling of order unity. Barring threshold or non-renormalizable gravitational effects, or assumed presence of additional light scalar particles of unprescribed origin, all other attempts to achieve manifest one-loop gauge coupling unification in SUSY SO(10) with left-right intermediate symmetry have not been successful so far. Attributing this failure to lack of flavor symmetry in the GUT, we show how the spontaneous symmetry breaking of SO(10)×S4SO(10)\times S_4 leads to such intermediate scale extending over a wide range, MR≃5×109M_R \simeq 5\times 10^{9} GeV to 101510^{15} GeV. All the charged fermion masses are fitted at the see-saw scale, MN≃MR≃4×1013M_N\simeq M_R \simeq 4 \times 10^{13} GeV which is obtained with Majorana coupling f0≃1f_0 \simeq 1. Using a constrained parametrization in which CP-violation originates only from quark sector, besides other predictions made in the neutrino sector, the reactor mixing angle is found to be θ13≃3∘−5∘\theta_{13} \simeq 3^{\circ} - 5^{\circ} which is in the range accessible to ongoing and planned experiments. The leptonic Dirac phase turns out to be δ∼2.9−3.1\delta \sim 2.9- 3.1 radians with Jarlskog invariant J∼2.95×10−5−10−3J \sim 2.95 \times 10^{-5} - 10^{-3}.Comment: Minor clarification and few references added to match the published versio

    Orientation of the Stripe Formed by the Two-Dimensional Electrons in Higher Landau Levels

    Full text link
    Effect of periodic potential on the stripe phase realized in the higher Landau levels is investigated by the Hartree-Fock approximation. The period of the potential is chosen to be two to six times of the fundamental period of the stripe phase. It is found that the stripe aligns perpendicularly to the external potential in contrast to a naive expectation and hydrodynamic theory. Charge modulation towards the Wigner crystallization along the stripe is essential for the present unexpected new result.Comment: 5 pages, RevTex, two figures included in the tex

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Entropy and Exact Matrix Product Representation of the Laughlin Wave Function

    Get PDF
    An analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for filling fraction nu=1. Also, for filling fraction nu=1/m, where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix product state. An analytical matrix product state representation of this state is proposed in terms of representations of the Clifford algebra. For nu=1, this representation is shown to be asymptotically optimal in the limit of a large number of particles

    Static and dynamic properties of crystalline phases of two-dimensional electrons in a strong magnetic field

    Full text link
    We study the cohesive energy and elastic properties as well as normal modes of the Wigner and bubble crystals of the two-dimensional electron system (2DES) in higher Landau levels. Using a simple Hartree-Fock approach, we show that the shear moduli (c66c_{66}'s) of these electronic crystals show a non-monotonic behavior as a function of the partial filling factor ν∗\nu^* at any given Landau level, with c66c_{66} increasing for small values of ν∗\nu^*, before reaching a maximum at some intermediate filling factor νm∗\nu^*_m, and monotonically decreasing for ν∗>νm∗\nu^*>\nu^*_m. We also go beyond previous treatments, and study how the phase diagram and elastic properties of electron solids are changed by the effects of screening by electrons in lower Landau levels, and by a finite thickness of the experimental sample. The implications of these results on microwave resonance experiments are briefly discussed.Comment: Discussion updated - 16 pages, 10 figures; version accepted for publication in Phys. Rev.

    Wigner Crystallization of a two dimensional electron gas in a magnetic field: single electrons versus electron pairs at the lattice sites

    Full text link
    The ground state energy and the lowest excitations of a two dimensional Wigner crystal in a perpendicular magnetic field with one and two electrons per cell is investigated. In case of two electrons per lattice site, the interaction of the electrons {\em within} each cell is taken into account exactly (including exchange and correlation effects), and the interaction {\em between} the cells is in second order (dipole) van der Waals approximation. No further approximations are made, in particular Landau level mixing and {\em in}complete spin polarization are accounted for. Therefore, our calculation comprises a, roughly speaking, complementary description of the bubble phase (in the special case of one and two electrons per bubble), which was proposed by Koulakov, Fogler and Shklovskii on the basis of a Hartree Fock calculation. The phase diagram shows that in GaAs the paired phase is energetically more favorable than the single electron phase for, roughly speaking, filling factor ff larger than 0.3 and density parameter rsr_s smaller than 19 effective Bohr radii (for a more precise statement see Fig.s 4 and 5). If we start within the paired phase and increase magnetic field or decrease density, the pairs first undergo some singlet- triplet transitions before they break.Comment: 11 pages, 7 figure

    Vortex molecules in coherently coupled two-component Bose-Einstein condensates

    Full text link
    A vortex molecule is predicted in rotating two-component Bose-Einstein condensates whose internal hyperfine states are coupled coherently by an external field. A vortex in one component and that in the other are connected by a domain wall of the relative phase, constituting a "vortex molecule", which features a nonaxisymmetric (pseudo)spin texture with a pair of merons. The binding mechanism of the vortex molecule is discussed based on a generalized nonlinear sigma model and a variational ansatz. The anisotropy of vortex molecules is caused by the difference in the scattering lengths, yielding a distorted vortex-molecule lattice in fast rotating condensates.Comment: 4 pages, 4 figures, greatly revised versio

    Ground state phase diagram of 2D electrons in a high Landau level: - DMRG study

    Full text link
    The ground state phase diagram of 2D electrons in a high Landau level (index N=2) is studied by the density matrix renormalization group method. Pair correlation functions are systematically calculated for various filling factors from v=1/8 to 1/2. It is shown that the ground state phase diagram consists of three different CDW states called stripe-phase, bubble-phase, and Wigner crystal. The boundary between the stripe and the bubble phases is determined to be v_c = 0.38, and that for the bubble phase and Wigner crystal is v_c = 0.24. Each transition is of first order.Comment: 4 pages, 6 figure

    Real Space Effective Interaction and Phase Transition in the Lowest Landau Level

    Full text link
    The transition between the stripe state and the liquid state in a high magnetic field is studied by the density-matrix renormalization-group (DMRG) method. Systematic analysis on the ground state of two-dimensional electrons in the lowest Landau level shows that the transition from the stripe state to the liquid state at v=3/8 is caused by a reduction of repulsive interaction around r=3. The same reduction of the interaction also stabilizes the incompressible liquid states at v=1/3 and 2/5, which shows a similarity between the two liquid states at v=3/8 and 1/3. It is also shown that the strong short-range interaction around r=1 in the lowest Landau level makes qualitatively different stripe correlations compared with that in higher Landau levels.Comment: 5 pages, to appear in J. Phys. Soc. Jpn. Vol.73, No.8 (2004
    • …
    corecore