14,046 research outputs found
The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently
We study families H_n of 1D quantum spin systems, where n is the number of
spins, which have a spectral gap \Delta E between the ground-state and
first-excited state energy that scales, asymptotically, as a constant in n. We
show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins,
where m is an O(1) constant, is locally the same as the ground state
|\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to
the ground state of H_n can be stored efficiently for all n. We formulate a
conjecture that, if true, would imply our result applies to all noncritical 1D
spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change
A universal GRB photon energy-peak luminosity relation
The energetics and emission mechanism of GRBs are not well understood. Here
we demonstrate that the instantaneous peak flux or equivalent isotropic peak
luminosity, L_iso ergs s^-1, rather than the integrated fluence or equivalent
isotropic energy, E_iso ergs, underpins the known high-energy correlations.
Using new spectral/temporal parameters calculated for 101 bursts with redshifts
from BATSE, BeppoSAX, HETE-II and Swift we describe a parameter space which
characterises the apparently diverse properties of the prompt emission. We show
that a source frame characteristic-photon-energy/peak luminosity ratio, K_z,
can be constructed which is constant within a factor of 2 for all bursts
whatever their duration, spectrum, luminosity and the instrumentation used to
detect them. The new parameterization embodies the Amati relation but indicates
that some correlation between E_peak and E_iso follows as a direct mathematical
inference from the Band function and that a simple transformation of E_iso to
L_iso yields a universal high energy correlation for GRBs. The existence of K_z
indicates that the mechanism responsible for the prompt emission from all GRBs
is probably predominantly thermal.Comment: Submitted to Ap
Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance
Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches
The interplay between tissue growth and scaffold degradation in engineered tissue constructs
In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation.\ud
\ud
In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (i) differential interactions between cells and the supporting scaffold and their associated ECM, (ii) scaffold degradation, and (iii) mechanotransduction-regulated cell proliferation and ECM deposition.\ud
\ud
Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo
- …