14,766 research outputs found
Chemical composition of stellar populations in Omega Centauri
We derive abundances of Fe, Na, O, and s-elements from GIRAFFE@VLT spectra
for more than 200 red giant stars in the Milky Way satellite Omega Centauri.
Our preliminary results are that: (i) we confirm that Omega Centauri exibiths
large star-to-star metallicity variations ( 1.4 dex); (ii) the
metallicity distribution reveals the presence of at least five stellar
populations with different [Fe/H]; (iii) a clear Na-O anticorrelation is
clearly observed for the metal-poor and metal-intermediate populations while
apparently the anticorrelation disappears for the most metal-rich populations.
Interestingly the Na level grows with iron.Comment: 2 pages, 2 figures. To appear in the proceedings of IAU Symp. 268
"Light elements in the Universe" (C. Charbonnel, M. Tosi, F. Primas, C.
Chiappini, eds., Cambridge Univ. Press
Detecting planets around stars in nearby galaxies
The only way to detect planets around stars at distances of several kpc is by
(photometric or astrometric) microlensing observations. In this paper, we show
that the capability of photometric microlensing extends to the detection of
signals caused by planets around stars in nearby galaxies (e.g. M31) and that
there is no other method that can achieve this. Due to the large crowding,
microlensing experiments towards M31 can only observe the high-magnification
part of a lensing light curve. Therefore, the dominating channel for
microlensing signals by planets is in distortions near the peak of
high-magnification events as discussed by Griest and Safizadeh. We calculate
the probability to detect planetary anomalies for microlensing experiments
towards M31 and find that jupiter-like planets around stars in M31 can be
detected. Though the characterization of the planet(s) involved in this signal
will be difficult, the absence of such signals can yield strong constraints on
the abundance of jupiter-like planets.Comment: 16 LaTex Pages, including 1 Postscript Figures, submitted to A&A;
title changed, one more author added, completely revised version: central
point is detecting planet in nearby galaxies and one more technique is taken
into consideratio
Contribution of Skylab multispectral imagery to the remote sensing studies of Mount Etna volcano
There are no author-identified significant results in this report
PRRT2 gene variant in a child with dysmorphic features, congenital microcephaly, and severe epileptic seizures: genotype-phenotype correlation?
BACKGROUND: Mutations in Proline-rich Transmembrane Protein 2 (PRRT2) have been primarily associated with individuals presenting with infantile epilepsy, including benign familial infantile epilepsy, benign infantile epilepsy, and benign myoclonus of early infancy, and/or with dyskinetic paroxysms such as paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, and exercise-induced dyskinesia. However, the clinical manifestations of this disorder vary widely. PRRT2 encodes a protein expressed in the central nervous system that is mainly localized in the pre-synaptic neurons and is involved in the modulation of synaptic neurotransmitter release. The anomalous function of this gene has been proposed to cause dysregulation of neuronal excitability and cerebral disorders. CASE PRESENTATION: We hereby report on a young child followed-up for three years who presents with a spectrum of clinical manifestations such as congenital microcephaly, dysmorphic features, severe intellectual disability, and drug-resistant epileptic encephalopathy in association with a synonymous variant in PRRT2 gene (c.501C > T; p.Thr167Ile) of unknown clinical significance variant (VUS) revealed by diagnostic exome sequencing. CONCLUSION: Several hypotheses have been advanced on the specific role that PRRT2 gene mutations play to cause the clinical features of affected patients. To our knowledge, the severe phenotype seen in this case has never been reported in association with any clinically actionable variant, as the missense substitution detected in PRRT2 gene. Intriguingly, the same mutation was reported in the healthy father: the action of modifying factors in the affected child may be hypothesized. The report of similar observations could extend the spectrum of clinical manifestations linked to this mutation
Galaxy Evolution in Local Group Analogs. I. A GALEX study of nearby groups
Understanding the astrophysical processes acting within galaxy groups and
their effects on the evolution of the galaxy population is one of the crucial
topic of modern cosmology, as almost 60% of galaxies in the Local Universe are
found in groups. We imaged in the far (FUV 1539 A) and near ultraviolet (NUV
2316 A) with GALEX three nearby groups, namely LGG93, LGG127 and LGG225. We
obtained the UV galaxy surface photometry and, for LGG225, the only group
covered by the SDSS, the photometry in u, g, r, i, z bands. We discuss galaxy
morphologies looking for interaction signatures and we analyze the SED of
galaxies to infer their luminosity-weighted ages. The UV and optical photometry
was also used to perform a kinematical and dynamical analysis of each group and
to evaluate the stellar mass. A few member galaxies in LGG225 show a distorted
UV morphology due to ongoing interactions. (FUV-NUV) colors suggest that
spirals in LGG93 and LGG225 host stellar populations in their outskirts younger
than that of M31 and M33 in the LG or with less extinction. The irregular
interacting galaxy NGC3447A has a significantly younger stellar population (few
Myr old) than the average of the other irregular galaxies in LGG225 suggesting
that the encounter triggered star formation. The early-type members of LGG225,
NGC3457 and NGC3522, have masses of the order of a few 10^9 Mo, comparable to
the Local Group ellipticals. For the most massive spiral in LGG225, we estimate
a stellar mass of ~4x10 Mo, comparable to M33 in the LG. Ages of stellar
populations range from a few to ~7 Gyr for the galaxies in LGG225. The
kinematical and dynamical analysis indicates that LGG127 and LGG225 are in a
pre-virial collapse phase, i.e. still undergoing dynamical relaxation, while
LGG93 is likely virialized. (Abridged)Comment: 20 pages, 13 figures, accepted for publication in Astronomy and
Astrophysic
Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations
We report results on rotating stratified turbulence in the absence of
forcing, with large-scale isotropic initial conditions, using direct numerical
simulations computed on grids of up to 4096^3 points. The Reynolds and Froude
numbers are respectively equal to Re=5.4 x 10^4 and Fr=0.0242. The ratio of the
Brunt-V\"ais\"al\"a to the inertial wave frequency, N/f, is taken to be equal
to 4.95, a choice appropriate to model the dynamics of the southern abyssal
ocean at mid latitudes. This gives a global buoyancy Reynolds number
R_B=ReFr^2=32, a value sufficient for some isotropy to be recovered in the
small scales beyond the Ozmidov scale, but still moderate enough that the
intermediate scales where waves are prevalent are well resolved. We concentrate
on the large-scale dynamics, for which we find a spectrum compatible with the
Bolgiano-Obukhov scaling, and confirm that the Froude number based on a typical
vertical length scale is of order unity, with strong gradients in the vertical.
Two characteristic scales emerge from this computation, and are identified from
sharp variations in the spectral distribution of either total energy or
helicity. A spectral break is also observed at a scale at which the partition
of energy between the kinetic and potential modes changes abruptly, and beyond
which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous
in the flow in the velocity and temperature fields, with local overturning
events indicated by small Richardson numbers, and a small large-scale
enhancement of energy directly attributable to the effect of rotation is also
observed.Comment: 19 pages, 9 figures (including compound figures
- …