11,361 research outputs found

    Oxidation resistant porous material for transpiration cooled vanes

    Get PDF
    Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines

    High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis

    Full text link
    We present a generic approach for treating the effect of nuclear motion in the high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4_4 and CD4_4 and thereby provide direct theoretical support for a recent experiment [Baker {\it et al.}, Science {\bf 312}, 424 (2006)] that uses high-order harmonic generation to probe the ultra-fast structural nuclear rearrangement of ionized methane.Comment: 6 pages, 6 figure

    Angular Normal Modes of a Circular Coulomb Cluster

    Full text link
    We investigate the angular normal modes for small oscillations about an equilibrium of a single-component coulomb cluster confined by a radially symmetric external potential to a circle. The dynamical matrix for this system is a Laplacian symmetrically circulant matrix and this result leads to an analytic solution for the eigenfrequencies of the angular normal modes. We also show the limiting dependence of the largest eigenfrequency for large numbers of particles

    Does the quark-gluon plasma contain stable hadronic bubbles?

    Get PDF
    We calculate the thermodynamic potential of bubbles of hadrons embedded in quark-gluon plasma, and of droplets of quark-gluon plasma embedded in hadron phase. This is a generalization of our previous results to the case of non-zero chemical potentials. As in the zero chemical potential case, we find that a quark-gluon plasma in thermodynamic equilibrium may contain stable bubbles of hadrons of radius R≃1R \simeq 1 fm. The calculations are performed within the MIT Bag model, using an improved multiple reflection expansion. The results are of relevance for neutron star phenomenology and for ultrarelativistic heavy ion collisions.Comment: 12 pages including 8 figures. To appear in Phys. Rev.

    Sensitivity to Timing and Order in Human Visual Cortex

    Get PDF
    Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the how the brain encodes visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences between parts as small as 17 ms. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. This sensitivity to the order of stimulus presentation provides evidence that the brain may use differences in relative timing as a means of representing information.Comment: 10 figures, 1 tabl

    The Macrame 1024 node switching network

    Get PDF
    The work reported involves the construction of a large modular testbed using IEEE 1355 DS link technology. A thousand nodes will be interconnected by a switching fabric based on the STC104 packet switch. The system has been designed and constructed in a modular way in order to allow a variety of different network topologies to be investigated. Network throughput and latency have been studied for different network topologies under various traffic conditions
    • …
    corecore