1,211 research outputs found
The impact of motor symptoms on self-reported anxiety in Parkinson's disease
OBJECTIVE: Anxiety is commonly endorsed in Parkinson's disease (PD) and significantly affects quality of life. The Beck Anxiety Inventory (BAI) is often used but contains items that overlap with common PD motor symptoms (e.g., âhands tremblingâ). Because of these overlapping items, we hypothesized that PD motor symptoms would significantly affect BAI scores.
METHODS: One hundred non-demented individuals with PD and 74 healthy control participants completed the BAI. PD motor symptoms were assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). Factor analysis of the BAI assessed for a PD motor factor, and further analyses assessed how this factor affected BAI scores.
RESULTS: BAI scores were significantly higher for PD than NC. A five-item PD motor factor correlated with UPDRS observer-rated motor severity and mediated the PD-control difference on BAI total scores. An interaction occurred, whereby removal of the PD motor factor resulted in a significant reduction in BAI scores for PD relative to NC. The correlation between the BAI and UPDRS significantly declined when controlling for the PD motor factor.
CONCLUSIONS: The results indicate that commonly endorsed BAI items may reflect motor symptoms such as tremor instead of, or in addition to, genuine mood symptoms. These findings highlight the importance of considering motor symptoms in the assessment of anxiety in PD and point to the need for selecting anxiety measures that are less subject to contamination by the motor effects of movement disorders.Published versio
Pulse propagation in discrete excitatory networks of integrate-and-fire neurons
We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise
Shift in critical temperature for random spatial permutations with cycle weights
We examine a phase transition in a model of random spatial permutations which
originates in a study of the interacting Bose gas. Permutations are weighted
according to point positions; the low-temperature onset of the appearance of
arbitrarily long cycles is connected to the phase transition of Bose-Einstein
condensates. In our simplified model, point positions are held fixed on the
fully occupied cubic lattice and interactions are expressed as Ewens-type
weights on cycle lengths of permutations. The critical temperature of the
transition to long cycles depends on an interaction-strength parameter
. For weak interactions, the shift in critical temperature is expected
to be linear in with constant of linearity . Using Markov chain
Monte Carlo methods and finite-size scaling, we find .
This finding matches a similar analytical result of Ueltschi and Betz. We also
examine the mean longest cycle length as a fraction of the number of sites in
long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial
permutations.Comment: v2 incorporated reviewer comments. v3 removed two extraneous figures
which appeared at the end of the PDF
Determination of the bond percolation threshold for the Kagome lattice
The hull-gradient method is used to determine the critical threshold for bond
percolation on the two-dimensional Kagome lattice (and its dual, the dice
lattice). For this system, the hull walk is represented as a self-avoiding
trail, or mirror-model trajectory, on the (3,4,6,4)-Archimedean tiling lattice.
The result pc = 0.524 405 3(3) (one standard deviation of error) is not
consistent with the previously conjectured values.Comment: 10 pages, TeX, Style file iopppt.tex, to be published in J. Phys. A.
in August, 199
Relation of Parkinson\u27s Disease Subtypes to Visual Activities of Daily Living
Visual perceptual problems are common in Parkinson\u27s disease (PD) and often affect activities of daily living (ADLs). PD patients with non-tremor symptoms at disease onset (i.e., rigidity, bradykinesia, gait disturbance or postural instability) have more diffuse neurobiological abnormalities and report worse non-motor symptoms and functional changes than patients whose initial symptom is tremor, but the relation of motor symptom subtype to perceptual deficits remains unstudied. We assessed visual ADLs with the Visual Activities Questionnaire in 25 non-demented patients with PD, 13 with tremor as the initial symptom and 12 with an initial symptom other than tremor, as well as in 23 healthy control participants (NC). As expected, the non-tremor patients, but not the tremor patients, reported more impairment in visual ADLs than the NC group, including in light/dark adaptation, acuity/spatial vision, depth perception, peripheral vision and visual processing speed. Non-tremor patients were significantly worse than tremor patients overall and on light/dark adaptation and depth perception. Environmental enhancements especially targeted to patients with the non-tremor PD subtype may help to ameliorate their functional disability
A record-driven growth process
We introduce a novel stochastic growth process, the record-driven growth
process, which originates from the analysis of a class of growing networks in a
universal limiting regime. Nodes are added one by one to a network, each node
possessing a quality. The new incoming node connects to the preexisting node
with best quality, that is, with record value for the quality. The emergent
structure is that of a growing network, where groups are formed around record
nodes (nodes endowed with the best intrinsic qualities). Special emphasis is
put on the statistics of leaders (nodes whose degrees are the largest). The
asymptotic probability for a node to be a leader is equal to the Golomb-Dickman
constant omega=0.624329... which arises in problems of combinatorical nature.
This outcome solves the problem of the determination of the record breaking
rate for the sequence of correlated inter-record intervals. The process
exhibits temporal self-similarity in the late-time regime. Connections with the
statistics of the cycles of random permutations, the statistical properties of
randomly broken intervals, and the Kesten variable are given.Comment: 30 pages,5 figures. Minor update
Stable Propagation of a Burst Through a One-Dimensional Homogeneous Excitatory Chain Model of Songbird Nucleus HVC
We demonstrate numerically that a brief burst consisting of two to six spikes
can propagate in a stable manner through a one-dimensional homogeneous
feedforward chain of non-bursting neurons with excitatory synaptic connections.
Our results are obtained for two kinds of neuronal models, leaky
integrate-and-fire (LIF) neurons and Hodgkin-Huxley (HH) neurons with five
conductances. Over a range of parameters such as the maximum synaptic
conductance, both kinds of chains are found to have multiple attractors of
propagating bursts, with each attractor being distinguished by the number of
spikes and total duration of the propagating burst. These results make
plausible the hypothesis that sparse precisely-timed sequential bursts observed
in projection neurons of nucleus HVC of a singing zebra finch are intrinsic and
causally related.Comment: 13 pages, 6 figure
Recommended from our members
Spatial constancy of attention across eye movements is mediated by the presence of visual objects
Recent studies have shown that attentional facilitation lingers at the retinotopic coordinates of a previously attended position after an eye movement. These results are intriguing, because the retinotopic location becomes behaviorally irrelevant once the eyes have moved. Critically, in these studies participants were asked to maintain attention on a blank location of the screen. In the present study, we examined whether the continuing presence of a visual object at the cued location could affect the allocation of attention across eye movements. We used a trans-saccadic cueing paradigm in which the relevant positions could be defined or not by visual objects (simple square outlines). We find an attentional benefit at the spatiotopic location of the cue only when the object (the placeholder) has been continuously present at that location. We conclude that the presence of an object at the attended location is a critical factor for the maintenance of spatial constancy of attention across eye movements, a finding that helps to reconcile previous conflicting results
- âŠ