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We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We
show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those
already described in continuum networks. Stable slow waves have not been previously reported in purely
excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of
our results is studied in the presence of noise.
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I. INTRODUCTION

Neurons in the brain interact by short electrical pulses.
Homogeneous networks of pulse emitting units such as neu-
rons can be in a state of synchronous[1] or asynchronous
activity [2,3]. In networks with spatial topology, additional
states are possible that are characterized by the propagation
of wavelike activity patterns[4–9]. Recently, a number of
experiments have indicated the existence of propagating ac-
tivity waves in neuronal tissue, notably the cortex[10,11],
thalamus[12–14], and hippocampus[15]. The mechanism
underlying the wave propagation is believed to be synaptic in
origin and has recently been the subject of several theoretical
studies[4–9]. Most of the theory has been developed in the
framework of continuum models that approximate networks
made of discrete elements. However it is well known that
discrete systems can exhibit behaviors that are not present in
their continuous counterparts. The most eloquent example is
the occurrence of propagation failure in discrete diffusive
media[16].

In this paper we explore the effects of the discrete spatial
structure on pulse propagation in a network of excitable
cells. We focus on excitatory networks which have retained
the widest attention in earlier studies[4–7]. Detailed models
are difficult to analyze and we consider a simplified descrip-
tion for the kinetics of single cells that retains the phenom-
enological dynamics of spiking neurons[17]. Using a net-
work of integrate-and-fire neurons, we exactly determine the
velocity and stability of propagating pulses. We find a fast
wave and a family of slow waves. The fast wave is similar to
the fast pulse already reported in continuum models while
slow waves are characterized by a nonmonotonic approach
towards the threshold. The existence of the fast wave is ro-
bust in the sense that a strong coupling strength is sufficient
to guarantee its existence whereas the family of slow waves
depends strongly on the form of the coupling and the length
of the synaptic footprint. Furthermore, we study the effects
of noise on pulse propagation and we observe a transition

between different stable waves, most often toward faster so-
lutions. In previous studies[9,18] stable slow waves have
been found for interacting populations of excitatory and in-
hibitory neurons. Here we report slow waves that arise due to
the discrete topology of the network. In the continuum limit,
i.e., in the limit of a large number of units and connections,
the slow waves disappear and we recover results already ob-
tained in spatially continuous excitatory networks.

II. THE MODEL

We consider an infinite one-dimensional network of ex-
citatory neurons where each neuron is allowed to fire only
one spike. A neuron located ati PZ is described, at timet, by
its membrane potentialvistd. The spiking process is de-
scribed by the firing timeti

sf d defined by the moment of
threshold crossing, visti

sf dd=q, from below,
dvistd /dtut=t

i
sf d .0. The subthreshold dynamics is given by the

leaky integrate-and-fire model,

dvistd
dt

= −
vistd

t
+ I istd + svr − qdd st − ti

sfdd, s1d

wheret is the membrane time constant,I i denotes the total
input current for neuroni (normalized by the membrane ca-
pacitance), and d is the Dirac pulse. The last term on the
right-hand side of Eq.(1) is a reset current that leads to the
reset process: whenvi reaches the firing thresholdq, it is
immediately reset to the subthreshold valuevr.

Each neuron receives inputs from itsN nearest neighbors.
The input current is taken to be of the form

I istd = gsyn o
ui−j uøN

vi jast − tj
sfdd + Iapp,

where Iapp is an applied current which we set to zero since
we are interested in the excitable regime only,gsyn is a posi-
tive coupling parameter,N is the distance of interaction, and
a is some type ofa-function describing the effect of a single
incoming spike. Its precise shape is crucial for the existence
of slow waves, as will be discussed later. For a better control
on the time constants ofa we use the piecewise linear rep-
resentation
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astd = 5 t/tr , 0 ø t ø tr

1 + str − td/td, tr ø t ø tr + td

0, otherwise,

s2d

wheretr is the synaptic rise time andtd is the synaptic decay
time. However, our main results still hold with smoother
functions. The synaptic weightsvi j are functions of the dis-
tance between neuronsi and j only, that is,vi j =vsui − j u d,
wherevsrd is the synaptic footprint. The qualitative results
do not depend on the precise form ofv and standard forms
or a random function can be considered. For concreteness,
unless stated otherwise, numerical simulations are done us-
ing the square footprint shape:vsrd=s2sd−1 for ur u ,s and 0
otherwise.

III. TRAVELING WAVE SOLUTIONS

We look for traveling waves where each neuron fires ex-
actly one spike. Integration of Eq.(1) over the interval
s−` ,tg yields the following expression forvi:

vistd = hst − ti
sfdd + gsyno

j=−N

N

v jest − ti−j
sfd d, s3d

where hstd=svr −qde−t/tQstd, with Q the Heaviside step
function, results from the reset process andestd
=e0

t assde−st−sd/tdsQstd is the normalized EPSP(excitatory
postsynaptic potential). We have writtenv j instead ofvi,i−j
so as to simplify the notations; we shall do so throughout this
paper.

We define a traveling wave solution of Eq.(1) to be one
for which vistd=Vst− i /cd, wherec.0 is the velocity. The
requirement that each neuron fires only once implies that
ti
sfd= i /c (up to an arbitrary constant due to the translation

invariance of the traveling wave solution) and subsequently
that Vsj=0d=q, wherej= t− i /c is the traveling wave coor-
dinate. Substitution in Eq.(3) yields

Vsjd = hsjd + gsyno
j=1

N

v jesj + j /cd. s4d

The sum runs over positivej only sinceesjd vanishes forj
ø0. UsingVs0d=q, we obtain the self-consistency condition
for the wave speedc,

o
j=1

N

v jes j /cd =
q

gsyn
. s5d

This equation accompanied by the condition

Vsjd , q for j , 0, s6d

which states that neurons reach the threshold for the first
time atj=0, determines the existence and the speed of trav-
eling waves in the network. The corresponding wave profile
is given by Eq.(4).

As it is commonly done for the study of continuum net-
works [5,8], the stability of traveling waves is calculated by
considering perturbations of the firing times. This technique

restricts the analysis to perturbations that travel with the
same velocity as the wave. If we suppose thattj

sfd= j /c+uj,
whereuj is a small perturbation, asymptotic stability holds if
uj →0 as j →`. Expanding Eq.(3) to first order inuj and
assuming a perturbation of the formuj =el j yields the char-
acteristic equation

o
j=1

N

v jse−l j − 1de8s j /cd = 0, s7d

where the derivativee8 can be expressed as the difference,

e8sxd = asxd −
1

t
esxd. s8d

Asymptotic stability holds if all nonzero solutions of Eq.(7)
have a negative real part. Note thatl=0 is always a solution
due to translation invariance. Numerically, we find that
branches along whichdgsyn/dc.0 are stable, all others be-
ing unstable. A pulse wave can lose its stability through a
saddle-node bifurcation. Other bifurcations do not appear in
our analysis.

Using Eq.(5) together with results of the stability analy-
sis, we plot in Fig. 1 the wave speed as a function of the
coupling parametergsyn. For nearest-neighbor couplings, i.e.,

FIG. 1. The speedc of a traveling pulse as a function of the
coupling parametergsyn is shown for various numbersN of presyn-
aptic neurons. Figures are obtained by solving Eq.(5) numerically.
Solid lines indicate stable solutions and dotted lines denote solu-
tions that are unstable or unacceptable[with respect to criterion
(6)]. Parameters areq=1, t=1, tr =1.5 and(a) N=1, td=0.5, (b)
N=2, td=0.5, (c) N=5, t=0.1, td=0.1, and(d) N=50, t=0.05,tr

=1.99, td=0.01. Calculations were done in(c) and (d) using the
exponential footprintvi =exps−i /5d and vi =exps−i /25d, respec-
tively (for the square footprint, the corresponding figure shows tiny
stable branches of slow pulse that are difficult to visualize). The
normalization is achieved by rescalinggsyn. WhenNù2 there is a
family of slow waves. The circles labeled A and B in(b) at gsyn

=1.54 denote a reference parameter set related to the fast and the
slow wave, respectively.
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N=1, we qualitatively obtain the same results as those
obtained in continuum models. Specifically, we obtain the
following.

(i) There is a critical couplinggsyn
* below which the wave

fails to propagate.
(ii ) There are two branches of solutions for the wave

speed reported as the fast and the slow branch.
(iii ) The solutions on the slow branch are irrelevant since

they are unstable or do not satisfy the condition(6).
As the extent of the coupling increases, that is, whenN

ù2, a qualitative change occurs in the form of the speed
graph as new branches of stable solutions appear. The num-
ber of these branches is parametrized by the numberN of
presynaptic neurons, and their existence depends crucially on
the form ofa. As we have already mentioned, the shape of
the weight function does not qualitatively affect this result
but changes the size of the regions of stability. The exact
conditions under which the slow waves begin to exist are
difficult to establish. A necessary, but not sufficient condition
is a having a sharp decaying phase. Let us focus on the case

N=2 which exemplifies much of the interesting features. In
this case, there is at most one stable branch of slow waves.
The bifurcation diagram shown in Fig. 2 gives the precise
location of the slow waves in the two-parameter diagram
str ,tdd. It can be seen that a simple necessary condition for
the existence of the bistable regime is given bytr .td. The
typical profile of the two waves is shown in Fig. 3 for the
two solutions marked as A and B in Fig. 1(b). The potential
of the fast wave increases monotonically to the threshold
while the slow wave profile has a bump. This is due to the
fact that the firing period 1/c is comparable to the time to
peak ofe. This results in the effect of the first spike received
from the second neighbor beginning to wear off shortly after
the arrival of the second spike. The selection between the
two waves is made by the initial stimulation. The fast wave
is easily initiated with a shock initial condition while the
slow wave is evoked when forcing the neighboring neurons
to fire one after another with a delay close to 1/c. In practice
the first neurons of the network are stimulated using the the-
oretical prediction of the wave profile given by Eq.(4). The
two types of pulse are observed from simulating Eq.(1) with
different initial stimulations(Fig. 4).

These observations generalize to the case ofN presynaptic
neurons: up toN−1 branches of stable slow waves can be
expected. On the fast solution branch, the corresponding
voltage increases monotonically before hitting the threshold,

FIG. 2. Locus of existence of a bistable regime, i.e., the exis-
tence and the stability of a fast pulse and a slow pulse, in thestr ,tdd
plane. Parameters areq=1, t=1, N=2. In the bistable region
(lower part of the graph) there exist values of the coupling strength
gsyn such that a fast wave and a slow wave can propagate in the
network. In the upper part, only fast waves can be initiated.

FIG. 3. The wave profileVsjd as a function of the traveling
wave coordinatej for j,0 (neurons have not fired) obtained by a
numerical simulation of the network. Results are in agreement with
the theoretical expression(4). The membrane potential of(a) the
fast wave and(b) the slow wave are shown, corresponding to the
two points A and B of Fig. 1(b), respectively.

FIG. 4. Space-time plot of voltage obtained by a numerical integration of Eq.(1) in a network of 50 neurons using the reference
parameter set given in Fig. 1. The voltage is shown in levels of gray according to the scale bar on the right. The condition that each neuron
can fire only one spike is fulfilled by taking a sufficiently small reset value,vr =−0.25. The two types of pulses are initiated using an injected
current into a group ofN neurons on the left. HereN=2.
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whereas on the slow branches it has a number of maxima(in
general, with decreasing wave speed each new branch of
solutions is characterized by an additional maximum, thus
there can be up toN−1). It can be seen from Fig. 1(d) that
the branches of slow solutions may overlap, resulting in a
multistable regime. AsN is increased, the slow solutions
progressively disappear, as the size of the corresponding
branches diminishes; the number of folds in the speed graph
increases according toN and the folds become thinner at the
same time. In the continuum limit, obtained asN→` while
the distance between cells is rescaled as 1/N, the speed dia-
gram approaches that of the corresponding continuum model
in which no slow wave exists[Fig. 1(d)]. Note that for suf-
ficiently strong coupling, there is only a fast wave since the
slow one is unstable(or unacceptable) and the wave speed is
mainly determined by the firing of the most remote presyn-
aptic neuron, although contributions of other presynaptic
neurons tend to increase the wave speed.

IV. SOME ANALYTICAL RESULTS

We now determine some properties of traveling waves by
using the specific shape ofa or by taking advantage of some
limiting situations. From Eq.(2) we calculate the analytical
expression of the EPSP,e. The self-consistency equation(5)
can be rewritten as

gN+1z+ o
j=0

N

gie
−jz =

q

gsyn
, s9d

wherez=1/c and the constantsgi depend on the parameters
of the network: the time constantst ,tr ,td and the synaptic
weightsvi. The wave speed can be explicitly calculated in
the simple case of nearest-neighbor connections, i.e.,N=1,
and we obtain(Appendix A)

c =5
1

tfW−1s− ge−ad + ag
, c* ø c ø tr

−1

1

tfW0s− e−bd + bg
, c . tr

−1,

whereWk denotes thekth branch of the LambertW function
[19] (the expression of the constantsa, b, andg is given in
the Appendix). The speedc* denotes the minimal wave speed
given by

c* = htr + t lnf1 + std/trds1 − e−tr/tdgj−1 s10d

and obtained from the critical coupling

gsyn
* = q/ht − st2/tddlnf1 + std/trds1 − e−tr/tdgj s11d

below which propagation fails. Note that we have incorpo-
rated the coupling strengthv1 in gsyn

* , i.e., we takev1=1.
Equation (11) gives an upper bound forgsyn

* as N varies
(when introducing the normalization of the synaptic weights
v j in gsyn). Moreover, it is straightforward to derive a general
scaling law for the velocity as a function of the coupling
strength(see Appendix B)

cq+1 = Kgsyn, s12d

asc→`, whereq is the order of the first nonzero term in the
expansion ofastd at t=0, andK is a constant. Fora given by
Eq. (2), we haveq=1.

V. EFFECTS OF NOISE

Real neurons are subject to noise which causes their
physical properties to fluctuate. There are numerous possi-
bilities for modeling noise in spiking neurons and we con-
sider here the simple case where the firing threshold is the
noisy parameter. In principle, any of the neuronal parameters
can be subject to this type of noise but for the sake of sim-
plicity we will concentrate on a “slow noise in the threshold”
[17]. Due to the linearity of the model, this approach is for-
mally equivalent to a fluctuating conductancegsyn. In the
following, the firing thresholds of the neurons are treated as
independent, identically distributed random variables with a
given distributionPq which we assume to be Gaussian, i.e.,

Pqsxd =
e−sx − q̃d2/2s

Î2ps2
,

where q̃=1 is the center of the distribution, ands!1 its
width. In this situation, it is no longer possible to predict the
firing times given the input, but only their probability distri-
bution. In the noiseless case, i.e.,s=0, the network has up to
N stable waves and we can expect that for sufficiently small
amounts of noise the network fluctuates around these solu-
tions. The perturbation of the firing time of neurons will
propagate along the network with the wave of excitation. If
we can show that there is a high probability that this pertur-
bation stays bounded, then the wave is “statistically” stable.
To clearly illustrate our analysis, we focus on the caseN
=2, but the same technique can be applied to anyN.

Let T=c−1 be the time(in the noiseless network) between
the spikes of two neighboring neurons(say, i =0 and i =1).
Given two presynaptic firing timest0

f =0 and t1
f =T−dt1,

where dt1 is a perturbation due to noise, the membrane
potential of the postsynaptic neuron evolves according to
Eq. (3),

vstudt1d = gsynfv2estd + v1est − T + dt1dg,

and firing occurs att2
f =sT−dt1d+sT−dt2d if

vs2T − dt2 − dt1udt1d = q,

with q the actual value of the threshold, provided the thresh-
old has not been reached at an earlier time(for convenience,
we will write s=dt1 and r =dt2). Hence, the probability of
occurrence ofr is zero if this condition is violated, and is
otherwise determined by the threshold distribution through
the relation

Psr usd = Pq„vs2T − r − susd…Udv
dr
U . s13d

In addition, the neuron fails to fire if maxhvst usdj,q, which
leads to the normalization
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Pfailssd +E
−`

`

drPsr usd = 1,

where

Pfailssd =E
maxhvstusdj

`

dxPqsxd

is the failure probability. CalculatingPsr usd andPfailssd, we
obtain the following results: for smallusu ands, the distribu-
tion of r is peaked aroundr =0 and the failure probability is
negligible, i.e., the network tends to fluctuate around the
noiseless pulse wave solution. For large values ofusu or s,
Pfail approaches 1 which leads to a high probability of propa-
gation failure. For the slow wave, there is also an intermedi-
ate domain, whens is positive but not too large, where the
failure probability is low, but another peak emerges aboutr
=s in the firing-time distribution; the network has a high
probability of switching to the fast wave solution(Fig. 5).
These observations are corroborated by the iterative calcula-
tion of the firing-time distribution

Pnsrd =E dsPsr usdPn−1ssd

with the initial condition

P0srd = d srd,

that is, the noise is “switched on” when the wave reaches the
neuron located ati =1. The evolution of the firing-time dis-
tribution (see Fig. 6) clearly shows three possible outcomes.

(i) When s is small enough, the slow wave is “statisti-
cally” stable but because of the noisy threshold, the failure
probability always has a small positive value.

(ii ) As s grows, the slow wave destabilizes before the
fast wave. The robustness of the fast wave could be guessed
from Eq. (13) sincedv /dr is significantly larger for the fast

wave, so that a given perturbation on the threshold results in
a smaller perturbation of the firing time. Thus, there is a
regime where only fast waves can propagate onto significant
distances.

(iii ) For large values ofs both waves destabilize and the
network returns to its resting state. Note that the width of the
distribution Pnsrd also provides an estimate of the fluctua-
tions in the interspike intervals.

VI. HIGHER-DIMENSIONAL NETWORKS

We focus on a synaptic architecture derived from a one-
dimensional arrangement[20]. Realistic networks take into
account the two or three-dimensional structure of the physi-
cal space. In this section, we show that higher-dimensional
networks also support the propagation of fast and slow
pulses, and that the wave speed is determined by a general-
ized version of Eq.(5).

We consider a network on thed-dimensional square lat-
tice Zd. Neurons are located at the nodes of the lattice. A
neuron x receives a connection from another neurony if
distsx ,ydøR, where dist is a distance onZd (here we use the
usual Euclidian distance) andR.0 determines the extent of
the coupling. We define a plane wave solution as one for
which

vsx,td = VSt −
n ·x

c
D ,

wherevsx ,td is the time course of the membrane potential of
the neuron located atx, nPRd is a unitary vector that gives
the direction of propagation,c is the wave speed, and the dot
denotes the usual scalar product onRd. The expression of the
wave profile is given by

FIG. 5. Transition from a slow wave to a fast wave in a noisy
network, obtained by numerical integration of Eq.(1) in a network
of 100 neurons with noisy thresholds. The voltage is shown in lev-
els of gray according to the scale bar on the right. Parameters are
t=1, tr =1.5,td=0.5,gsyn=1.56, ands=0.01(see Fig. 6 for a com-
parison). The slow wave is initiated by stimulating a group ofN
neurons on the left(here,N=2). All neurons are held silent after
spiking for the first time.

FIG. 6. Firing-time distributionsPnsrd associated to the slow
wave solution for various amounts of noise:s=0.001(solid line),
s=0.01 (dashed line), ands=0.08 (dotted line). The evolution of
the firing-time distribution is represented at(a) n=1, (b) n=11, (c)
n=26, (d) n=51. Parameters of the network aret=1, tr =1.5, td

=0.5, gsyn=1.56. The speed of the slow and the fast wave iscslow

=0.74 andcfast=1.32, respectively. The peak on the right-hand side
is centered around 0.6.1/cslow−1/cfast and corresponds to the
probability that the network switches to the fast wave solution.
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Vsjd = hsjd + gsyn o
distsx,ydøR

vsx,ydeSj +
n ·x

c
D , s14d

wherej= t−n ·x /c is the traveling wave coordinate. The self-
consistency equation forc is derived from the threshold con-
dition, namely,

o
distsx,ydøR

vsx,ydeSn ·x

c
D =

q

gsyn
, s15d

which can be seen as a generalization of Eq.(5). The wave
speed depends on the direction of propagation as well as on
the connectivity pattern. The dependence on the direction of
propagation is not seen in continuous models where the neu-
rons are packed in a dense manner, leading to an isotropic
symmetry.

A numerical study of Eq.(15) reveals a behavior similar
to the one-dimensional case. In particular, both fast and slow
waves can propagate, and the number of slow wave solutions
depends on the connectivity pattern and the direction of
propagation. Figure 7 shows the time course of the voltage
for a fast and a slow wave in a two-dimensional network.
The predictions are in excellent agreement with a direct in-
tegration of Eq.(1) (not shown).

VII. CONCLUSION

The discrete spatial connectivity is a natural property of
neural networks that could lead to unexpected features. It is
largely believed that purely excitatory networks do not allow
for the propagation of slow traveling pulses. Surprisingly we
found that considering a discrete spatial connectivity leads to
the existence of a family of slow waves parametrized by the
number of presynaptic units. These slow waves are charac-
terized by a nonmonotonic increase of the voltage before the
threshold is reached, due to a precise arrival of the succes-
sive EPSPs. The presence of weak noise does not alter our
results, and moreover we show that a moderate amount of

noise can induce both propagation failure or switching be-
tween different stable propagating modes. These new prop-
erties emerge when considering a limited number of presyn-
aptic cells, relevant to the study of sparsely connected
networks. In continuum models with spatially decaying con-
nectivity, the propagation of slow waves is achieved with the
aid of an inhibitory population, whereas excitatory networks
can exhibit only fast waves.

Discrete neural networks have been introduced in the
study of synfire chains[21,22]. Theoretical analyses of trav-
eling waves in discrete networks with synaptic coupling are
scarce[23]. Mathematical tools are well developed for the
analysis of continuum media and the determination of trav-
eling wave solutions is often related to a boundary value
problem. However we have shown that an analytical treat-
ment is also possible for discrete media. This paper provides
a first step in the study of traveling pulses in discrete net-
works of simplified integrate-and-fire neurons. The theoreti-
cal framework can be easily generalized to include different
aspects of neuronal dynamics.

ACKNOWLEDGMENTS

We are thankful to W. Gerstner for helpful discussions.
This research was supported by Grant No. 2100-065269
from the SNF.

APPENDIX A: VELOCITY OF THE FAST WAVE
FOR NEAREST-NEIGHBOR COUPLING

Using the analytical form ofe,

estd

=5
0, t , 0

t

tr
ft + tse−t/t − 1dg, 0 ø t ø tr

tS1 +
tr + t − t

td
D +

t 2

tr
e−t/t

− S t 2

tr
+

t 2

td
De−st−trd/t, tr ø t ø tr + td

F t 2

tr
+

t 2

td
estr+tdd/t − S t 2

tr
+

t 2

td
Detr/tGe−t/t, tr + td ø t,

expression (9) takes the form [we neglect the domain
c, str +tdd−1 since it is lower than the minimal wave speed,
see below]

z+ ge−z=a, str + tdd−1 ø c ø tr
−1,

z+ e−z=b, tr
−1 ø c,

and the solution is given by

c =5
1

t fW−1s− ge−ad + ag
, str + tdd−1 ø c ø tr

−1

1

t fW0s− e−bd + bg
, tr

−1 ø c,

sA1d

where

FIG. 7. Propagation of pulse waves in a two-dimensional net-
work. We consider waves that propagate in the directionu=45o,
i.e., n=1/Î2s1,1d. (a) Wave speedc as a function of the coupling
parametergsyn, obtained by solving(15) numerically.(b) Profile of
the slow (solid line) and the fast(dashed line) plane waves as a
function of the traveling wave coordinatej for j,0, calculated
using Eq.(14). Parameters areq=1, t=0.5,tr =1.9,td=0.1 and(b)
gsyn=14. The speed of the two stable waves isc=0.521(slow wave)
and 0.755(fast wave). The synaptic connectivity is specified by
the Euclidian distance distsx ,yd=foi sxi −yid2g1/2 with the radius
R=2. The synaptic weights are scaled according tovsx ,yd
=expf−distsx ,ydg.
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a = 1 + str + tdd/t − stdqd/st2gsynd,

b = 1 + strqd/st2gsynd,

g = s1 + td/trdetr/t − td/tr .

The critical coupling corresponds to the situation where
maxhestdj=q=1, which yields

gsyn
* =

1

est*d
,

wheret* =tr +t lnf1+std/trds1−e−tr/tdg is the time to peak of
e, from which we recover Eq.(11). Having checked thatt*

P str ,tr +tdd, we can introduce this expression in Eq.(A1) to
obtain the minimal wave speed

c* =
1

t fW−1s− ge−a*
d + a*g

,

wherea* =1+t* /t. It is then easily checked thatgea*
=e−1, so

that W−1s−ge−a*
d=−1, and we finally obtain the expected

valuec* =1/t* .

APPENDIX B: ASYMPTOTIC APPROXIMATION OF THE
FAST WAVE SPEED

For large values ofgsyn one expects to obtain large speed
values. Following Ermentrout[4], we expande in Taylor
series about 0 in Eq.(5). If p is the order of the first nonzero
term in the expansion ofestd at t=0, we have

1

p ! cpespds0do
j=1

N

v j j
p + OS 1

cp+1D =
q

gsyn
,

whereespds0d is the derivative of orderp of estd at t=0. Thus,
we obtain the power law

cp = Kgsyn,

whereK is given by

K =
1

p ! q
espds0do

j=1

N

v j j
p.

Using Eq.(8), K can be expressed with the derivatives ofa
at t=0 andq=p−1 is the order of the first nonzero term in
the expansion ofa.
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