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Pulse propagation in discrete excitatory networks of integrate-and-fire neurons
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We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We
show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those
already described in continuum networks. Stable slow waves have not been previously reported in purely
excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of
our results is studied in the presence of noise.
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[. INTRODUCTION between different stable waves, most often toward faster so-
i o ) lutions. In previous studief9,18] stable slow waves have
Neurons in the brain interact by short electrical pulsesyeen found for interacting populations of excitatory and in-
Homogeneous networks of pulse emitting units such as nes;ipitory neurons. Here we report slow waves that arise due to
rons can be in a state of synchrondds or asynchronous he giscrete topology of the network. In the continuum limit,
activity [2,3]. In networks with spatial topology, additional j e in the limit of a large number of units and connections,
states are possible that are characterized by the propagatighy, sjow waves disappear and we recover results already ob-

of wavelike activity patterng4—9]. Recently, a number of 4ineq in spatially continuous excitatory networks.
experiments have indicated the existence of propagating ac-

tivity waves in neuronal tissue, notably the cortg0,11,

thalamus[12—-14, and hippocampu$l5]. The mechanism Il. THE MODEL

underlying the wave propagation is believed to be synaptic in . . ) )

origin and has recently been the subject of several theoretical V& consider an infinite one-dimensional network of ex-
studies[4—9]. Most of the theory has been developed in theutatory neurons where each neuron is _allowed Fo fire only
framework of continuum models that approximate networks>"€ SPike. A neuron located i 7. is described, at timg by
made of discrete elements. However it is well known thattS membrane potentlad)i(t).f The spiking process is de-
discrete systems can exhibit behaviors that are not present f¢tibed by the firing timet”’ defined by the moment of

their continuous counterparts. The most eloquent example i&reshold crossing, vi(ti(f)):ﬁ, from below,
the occurrence of propagation failure in discrete diffusivedvi(t)/dtlt:tfﬂ>O. The subthreshold dynamics is given by the
media[16]. leaky integrate-and-fire model,

In this paper we explore the effects of the discrete spatial
structure on pulse propagation in a network of excitable dv;(t) vi(t) 0
cells. We focus on excitatory networks which have retained P i) + (v, - D)ot -"), 1)

the widest attention in earlier studip$—7]. Detailed models

are difficult to analyze and we consider a simplified descripyynere 7 is the membrane time constahtdenotes the total
tion for the kinetics of single cells that retains the phenom-Input current for neurom (normalized by the membrane ca-
enological dynamics of spiking neuroii7]. Using a nét-  nacitance and 6 is the Dirac pulse. The last term on the
work of integrate-and-fire neurons, we exactly determine th ight-hand side of Eq(l) is a reset current that leads to the
velocity and stability of propagating pulses. We find a fast.ogat process: when reaches the firing threshold, it is
wave and a family of slow waves. The fast wave is similar toimmediately reset to the subthreshold valye

the fast pulse already reported in continuum models while  £o-h neuron receives inputs from Ksnearest neighbors.
slow waves are characterized by a nonmonotonic approacfy,, input current is taken to be of the form

towards the threshold. The existence of the fast wave is ro-

bust in the sense that a strong coupling strength is sufficient _ )

to guarantee its existence whereas the family of slow waves li(®) = Ysyn 2 wija(t=17) + lapp,

depends strongly on the form of the coupling and the length =l=N

of the synaptic footprint. Furthermore, we study the eﬁeCt%herelapp is an applied current which we set to zero since

of noise on pulse propagation and we observe a transitiog{,e are interested in the excitable regime ol is a posi-

tive coupling parametel is the distance of interaction, and
a is some type ot-function describing the effect of a single
*Corresponding author. Electronic address: laurent@badel.org incoming spike. Its precise shape is crucial for the existence
TCurrent address: CORTEX project, INRIA Lorraine, Campus of slow waves, as will be discussed later. For a better control
Scientifique, 54602 Villers-lés-Nancy, France. Electronic addresson the time constants af we use the piecewise linear rep-
arnaud.tonnelier@loria.fr resentation
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tance between neurorisand j only, that is, w;=w(|i—j]),

where w(r) is the synaptic footprint. The qualitative results 3 ' © DY - .

do not depend on the precise form @fand standard forms 4 / 1 @

or a random function can be considered. For concretenes: 3 % c

unless stated otherwise, numerical simulations are done us a p 1 2o ]

ing the square footprint shape(r)=(20) " for [r| <o and 0 - )
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I1l. TRAVELING WAVE LUTION . .
¢ SOLUTIONS FIG. 1. The speed of a traveling pulse as a function of the

We look for traveling waves where each neuron fires excoupling parametegs,,is shown for various numbers of presyn-
actly one spike. Integration of Eql) over the interval aptic neurons. Figures are obtained by solving &g numerically.

(—o,t] yields the following expression far;: Solid lines indicate stable solutions and dotted lines denote solu-
tions that are unstable or unacceptapléth respect to criterion
N (6)]. Parameters aréd=1, 7=1, ,=1.5 and(a) N=1, 74=0.5, (b)
vi(®) = 9t —t") + goyn 2 wje(t—t), (8)  N=2,74=0.5,(c) N=5, 7=0.1, 74=0.1, and(d) N=50, 7=0.05, 7,
j=-N

=1.99, 74=0.01. Calculations were done {c) and (d) using the
where 7(t)=(v,- e "O(t), with © the Heaviside step e_xponential footprintwi:exp(—ils) and wi:exp(—i/_25), respec-
function, results from the reset process andlt) tively (for the square footprint, the corresppndlng flgu_re shows tiny
:fé a(s)e‘(t‘s)”ds®(t) is the normalized EPSPexcitatory stable branches of slow pulse that are difficult to visualizéne

. ; . . normalization is achieved by rescaligg,, WhenN=2 there is a
postsynaptic potential We have writtenw; instead ofwi;j  family of slow waves. The circles labeled A and B (i) at Gsyn

so as to simplify the notations; we shall do so throughout this- 1 54 denote a reference parameter set related to the fast and the

paper. . . slow wave, respectively.
We define a traveling wave solution of E{.) to be one

for V\.Ih'Ch v =V(t=i/c), Wherec.>0 Is the veloglty. The restricts the analysis to perturbations that travel with the
requirement that each neuron fires only once implies that

. . - '“Same velocity as the wave. If we suppose thatj/c+u,
ti(f):I/C (up to an arbitrary constant due to the translation hereu. is aZmaII erturbation. as mp[:ot'c st]ab'lj't hoIst it
invariance of the traveling wave solutipand subsequently w Y ! perturbation, asymptot Mty :

—0)= e - ~ Uu;—0 asj—wo. Expanding Eq(3) to first order inu; and
:jri]r?;:ggsgz)stihrivohne:ﬁgEcES)I /y(i:elﬁj;he traveling wave coor assuming a perturbation of the fonm=e" yields the char-

acteristic equation

N
V(&) = (&) + Geyn, wyelé+j0). (4) N |
i=1 > oM -1)€(jlc) =0, (7)
The sum runs over positiveonly sincee(¢) vanishes foré =1
=< 0. UsingV(0) =4, we obtain the self-consistency condition

where the derivative’ can be expressed as the difference,
for the wave speed,

N 9 1
> wjeljlo) = —. (5) €'(x) = a(x) - —e(x). (8)
=1 gsyn T
This equation accompanied by the condition Asymptotic stability holds if all nonzero solutions of E)
V() <® foré<o, (6) have a negative real part. Note that0 is always a solution

due to translation invariance. Numerically, we find that
which states that neurons reach the threshold for the firdiranches along whictg,,/dc>0 are stable, all others be-
time até=0, determines the existence and the speed of traving unstable. A pulse wave can lose its stability through a
eling waves in the network. The corresponding wave profilesaddle-node bifurcation. Other bifurcations do not appear in
is given by Eq.(4). our analysis.
As it is commonly done for the study of continuum net-  Using Eq.(5) together with results of the stability analy-
works [5,8], the stability of traveling waves is calculated by sis, we plot in Fig. 1 the wave speed as a function of the
considering perturbations of the firing times. This techniquecoupling parametegs,,, For nearest-neighbor couplings, i.e.,
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I istabili 1 FIG. 3. The wave profilev(£§) as a function of the traveling
0'5__ Bistability ] wave coordinate for £¢<0 (neurons have not firgcbbtained by a
ob—— /. L numerical simulation of the network. Results are in agreement with
0 0.5 1 1.5 2 25 3 the theoretical expressio@). The membrane potential ¢f) the

Ty fast wave andb) the slow wave are shown, corresponding to the
two points A and B of Fig. (b), respectively.
FIG. 2. Locus of existence of a bhistable regime, i.e., the exis-
tence and the stability of a fast pulse and a slow pulse, ifthey) N=2 which exemplifies much of the interesting features. In
plane. Parameters ar=1, =1, N=2. In the bistable region this case, there is at most one stable branch of slow waves.
(lower part of the graphthere exist values of the coupling strength The bifurcation diagram shown in Fig. 2 gives the precise
Osyn Such that a fast wave and a slow wave can propagate in thipcation of the slow waves in the two-parameter diagram
network. In the upper part, only fast waves can be initiated. (7y,79). It can be seen that a simple necessary condition for
the existence of the bistable regime is givenhy 74. The
N=1, we qualitatively obtain the same results as thoseypical profile of the two waves is shown in Fig. 3 for the
obtained in continuum models. Specifically, we obtain thetwo solutions marked as A and B in Figcb). The potential

following. of the fast wave increases monotonically to the threshold
(i) There is a critical coupling;yn below which the wave while the slow wave profile has a bump. This is due to the
fails to propagate. fact that the firing period 1d is comparable to the time to
(i) There are two branches of solutions for the wavepeak ofe. This results in the effect of the first spike received
speed reported as the fast and the slow branch. from the second neighbor beginning to wear off shortly after
(iii) The solutions on the slow branch are irrelevant sincehe arrival of the second spike. The selection between the
they are unstable or do not satisfy the condit{én two waves is made by the initial stimulation. The fast wave

As the extent of the coupling increases, that is, when is easily initiated with a shock initial condition while the
=2, a qualitative change occurs in the form of the speedlow wave is evoked when forcing the neighboring neurons
graph as new branches of stable solutions appear. The nure fire one after another with a delay close ta@.llh practice
ber of these branches is parametrized by the nurhbef  the first neurons of the network are stimulated using the the-
presynaptic neurons, and their existence depends crucially aretical prediction of the wave profile given by Ed). The
the form of @. As we have already mentioned, the shape oftwo types of pulse are observed from simulating Eq .with
the weight function does not qualitatively affect this resultdifferent initial stimulationgFig. 4).
but changes the size of the regions of stability. The exact These observations generalize to the cadé pfesynaptic
conditions under which the slow waves begin to exist areneurons: up tdN—1 branches of stable slow waves can be
difficult to establish. A necessary, but not sufficient conditionexpected. On the fast solution branch, the corresponding
is @ having a sharp decaying phase. Let us focus on the cas@ltage increases monotonically before hitting the threshold,

100 100 1
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time
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FIG. 4. Space-time plot of voltage obtained by a numerical integration of(Bgn a network of 50 neurons using the reference

parameter set given in Fig. 1. The voltage is shown in levels of gray according to the scale bar on the right. The condition that each neuron

can fire only one spike is fulfilled by taking a sufficiently small reset vajye~0.25. The two types of pulses are initiated using an injected
current into a group oN neurons on the left. Herld=2.
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whereas on the slow branches it has a number of magima catl= KQsyn (12
general, with decreasing wave speed each new branch of ) . _
solutions is characterized by an additional maximum, thu@SC¢— %, whereq s the order of the first nonzero term in the
there can be up tdl-1). It can be seen from Fig.(d) that ~ &xpansion okx(t) att=0, andK is a constant. For given by
the branches of slow solutions may overlap, resulting in &9- (2), we haveq=1.

multistable regime. AN is increased, the slow solutions
progressively disappear, as the size of the corresponding
branches diminishes; the number of folds in the speed graph
increases according 9 and the folds become thinner at the  Real neurons are subject to noise which causes their
same time. In the continuum limit, obtained lds- while  physical properties to fluctuate. There are numerous possi-
the distance between cells is rescaled a¥, Ie speed dia- bilities for modeling noise in spiking neurons and we con-
gram approaches that of the corresponding continuum modejfder here the simple case where the firing threshold is the
in which no slow wave existgFig. 1(d)]. Note that for suf-  noisy parameter. In principle, any of the neuronal parameters
ficiently strong coupling, there is only a fast wave since thecan be subject to this type of noise but for the sake of sim-
slow one is unstablér unacceptableand the wave speed is plicity we will concentrate on a “slow noise in the threshold”
mainly determined by the firing of the most remote presyn-{17]. Due to the linearity of the model, this approach is for-
aptic neuron, although contributions of other presynaptignally equivalent to a fluctuating conductangg,, In the

V. EFFECTS OF NOISE

neurons tend to increase the wave speed. following, the firing thresholds of the neurons are treated as
independent, identically distributed random variables with a
IV. SOME ANALYTICAL RESULTS given distributionPy which we assume to be Gaussian, i.e.,
We now determine some properties of traveling waves by e 9120
using the specific shape afor by taking advantage of some Py(x) = \rmz '

limiting situations. From Eq(2) we calculate the analytical

expression of the EPSP, The self-consistency equatiés)  where 9=1 is the center of the distribution, ang<1 its
can be rewritten as width. In this situation, it is no longer possible to predict the
firing times given the input, but only their probability distri-

N
2+ yei= 3 9 bution. In the noiseless case, i.e50, the network has up to
e s Ye = gsyn’ N stable waves and we can expect that for sufficiently small

amounts of noise the network fluctuates around these solu-
wherez=1/c and the constantg, depend on the parameters tions. The perturbation of the firing time of neurons will
of the network: the time constantsr,, 7y and the synaptic propagate along the network with the wave of excitation. If
weights w;. The wave speed can be explicitly calculated inwe can show that there is a high probability that this pertur-
the simple case of nearest-neighbor connections,Nel, bation stays bounded, then the wave is “statistically” stable.

and we obtainAppendix A To clearly illustrate our analysis, we focus on the céke
=2, but the same technique can be applied to ldny
1 1 Let T=c™ be the timeg(in the noiseless netwoylbetween
AW, (- e +a]’ CsCsm the spikes of two neighboring neurofsay,i=0 andi=1).
c= 1 Given two presynaptic firing times)=0 and t{=T-at,,
_ c> 7t where 6t; is a perturbation due to noise, the membrane
TWo(-€™) +b] ' potential of the postsynaptic neuron evolves according to
whereW, denotes théith branch of the Lambe#V function Ea- (3),
[19] (the expression of tkle constargsb, andy is given in v(t[8ty) = gsy woe(t) + wie(t =T+ 8ty)],
the Appendiy. The speed” denotes the minimal wave speed . P .
given by and firing occurs at,=(T-dty) +(T-aty) if

V(2T = &ty = &ty oty) = 9,

] » ] with 9 the actual value of the threshold, provided the thresh-
and obtained from the critical coupling old has not been reached at an earlier tifioe convenience,
- _ ey we will write s=4t; and r=46t,). Hence, the probability of
Goyn= A7 (Plrg)In[1 +(rg/7)(L -]} (11) occurrence ofr is zero if this condition is violated, and is
otherwise determined by the threshold distribution through
the relation

¢ ={n+rIn[1+(rg7)(1- e "]t (10

below which propagation fails. Note that we have incorpo-
rated the coupling strength, in g;yn, i.e.,*we takew,;=1.
Equation(11) gives an upper bound fog, , as N varies
(when introducing the normalization of the synaptic weights P(r|s) = Py(w(2T - - §ls))
j in gsyn). Moreover, it is straightforward to derive a general

scaling law for the velocity as a function of the coupling In addition, the neuron fails to fire if méx(t|s)} <, which
strength(see Appendix B leads to the normalization

dv
ar ‘ . (13
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FIG. 5. Transition from a slow wave to a fast wave in a noisy
network, obtained by numerical integration of Efj) in a network o ) o )
of 100 neurons with noisy thresholds. The voltage is shown in ley- F!G- 6. Firing-time distributionsP,(r) associated to the slow
els of gray according to the scale bar on the right. Parameters atéave solution for various amounts of noise=0.001(solid line),
7=1, 7,=1.5, 74=0.5,eyy= 1.56, andr=0.01(see Fig. 6 for a com- on:QI(d_elshed_ I|n_§a a_nd q=0.08(dotted ling. The evolution of
parison. The slow wave is initiated by stimulating a group f  the firing-time distribution is represented(@j n=1, (b) n=11, (c)

neurons on the lefthere,N=2). All neurons are held silent after n=26, (d) n=51. Parameters of the network are 1, n.=1.5, g
spiking for the first time. =0.5, gsyn=1.56. The speed of the slow and the fast wavesijs,

=0.74 andcs,=1.32, respectively. The peak on the right-hand side
is centered around 0:61/cgqo,—1/Csast @and corresponds to the

pfail(s) + foo drP(rls) = 1, probability that the network switches to the fast wave solution.
wave, so that a given perturbation on the threshold results in
where a smaller perturbation of the firing time. Thus, there is a
® regime where only fast waves can propagate onto significant
pfail(g) = dxPy(X) distances.
max{v(t|s)} (iif) For large values ofr both waves destabilize and the

network returns to its resting state. Note that the width of the
distribution P,(r) also provides an estimate of the fluctua-
tions in the interspike intervals.

is the failure probability. Calculating(r|s) and P™@(s), we
obtain the following results: for smak| and o, the distribu-
tion of r is peaked around=0 and the failure probability is
negligible, i.e., the network tends to fluctuate around the

noiseless pulse wave solution. For large valuegsiobr o, VI. HIGHER-DIMENSIONAL NETWORKS
Pfal approaches 1 which leads to a high probability of propa-

gation failure. For the slow wave, there is also an intermedi-, /& foCus on a synaptic architecture derived from a one-
ate domain, whers is positive but not too large, where the dimensional arrangemeif20]. Realistic networks take into

failure probability is low, but another peak emerges alout account the two or thr(_ee—dimensional structure of.the physi—
=s in the firing-time distribution; the network has a high cal space. In this section, we show that higher-dimensional
probability of switching to the fast wave solutigffig. 5.  Networks aiso support the propagation of fast and slow

These observations are corroborated by the iterative calcul®u!Ses and that the wave speed is determined by a general-

tion of the firing-time distribution Ized version of Eq(S). o
g We consider a network on thetdimensional square lat-

tice Z9. Neurons are located at the nodes of the lattice. A
Pn(r):stP(r|s)Pn_1(s) neuronx receives a connection from another neunprif

dist(x,y) <R, where dist is a distance 6{ (here we use the

with the initial condition usual Euclidian distangeandR>0 determines the extent of
the coupling. We define a plane wave solution as one for

Po(r) = (), which

that is, the noise is “switched on” when the wave reaches the

neuron located at=1. The evolution of the firing-time dis- (X,0) =V<t— u>

tribution (see Fig. 6 clearly shows three possible outcomes. c

(i) When o is small enough, the slow wave is “statisti-
cally” stable but because of the noisy threshold, the failurevherev(x,t) is the time course of the membrane potential of
probability always has a small positive value. the neuron located at, n € RY is a unitary vector that gives
(i) As o grows, the slow wave destabilizes before thethe direction of propagatiorw,is the wave speed, and the dot
fast wave. The robustness of the fast wave could be guessel@notes the usual scalar productifh The expression of the
from Eq.(13) sinceduv/dr is significantly larger for the fast wave profile is given by
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noise can induce both propagation failure or switching be-
tween different stable propagating modes. These new prop-
erties emerge when considering a limited number of presyn-
aptic cells, relevant to the study of sparsely connected
networks. In continuum models with spatially decaying con-
nectivity, the propagation of slow waves is achieved with the
aid of an inhibitory population, whereas excitatory networks
can exhibit only fast waves.

Discrete neural networks have been introduced in the

work. We consider waves that propagate in the directiem5’,
i.e.,,n=1/J2(1,1). (a) Wave speea as a function of the coupling
parametegsy,, obtained by solving15) numerically.(b) Profile of
the slow (solid line) and the fast(dashed ling plane waves as a
function of the traveling wave coordinatefor £<0, calculated
using Eq.(14). Parameters aré=1, 7=0.5, ,=1.9, 7y=0.1 and(b)
Osyr= 14. The speed of the two stable waves+0.521(slow wave

study of synfire chainf21,22. Theoretical analyses of trav-

eling waves in discrete networks with synaptic coupling are
scarce[23]. Mathematical tools are well developed for the

analysis of continuum media and the determination of trav-
eling wave solutions is often related to a boundary value
problem. However we have shown that an analytical treat-
ment is also possible for discrete media. This paper provides

and 0.755(fast wavg. The synaptic connectivity is specified by 3 first step in the study of traveling pulses in discrete net-

the Euclidian distance dist,y)=[Z; (x—y)2]¥? with the radius
R=2. The synaptic weights are scaled according atx,y)
=exqd —dist(x,y)].

V(&) = n(§) + Osyn 2

distx,y)<R

w(x,y)e<§+ ”—CX) (14)

works of simplified integrate-and-fire neurons. The theoreti-
cal framework can be easily generalized to include different
aspects of neuronal dynamics.
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consistency equation faris derived from the threshold con-
dition, namely,

> w(x,y>e(”—(':x) -2 (15

dist(x,y)<R gsyn

which can be seen as a generalization of &)}. The wave e(t)

speed depends on the direction of propagation as well as on
the connectivity pattern. The dependence on the direction of
propagation is not seen in continuous models where the neu-
rons are packed in a dense manner, leading to an isotropic
symmetry.
A numerical study of Eq(15) reveals a behavior similar

to the one-dimensional case. In particular, both fast and slow
waves can propagate, and the number of slow wave solutions
depends on the connectivity pattern and the direction of
propagation. Figure 7 shows the time course of the voltage
for a fast and a slow wave in a two-dimensional network.
The predictions are in excellent agreement with a direct in-
tegration of Eq(1) (not shown.

APPENDIX A: VELOCITY OF THE FAST WAVE

FOR NEAREST-NEIGHBOR COUPLING

Using the analytical form o€,

rO, t<o0

—[t+ el -1)], o<t<rn
I'

n+7-t) 72
( ) + _e—t/T
Ty

<—+—)e L n<t<nt

TZ 7-2 Tl T | ot
—\—+—Jer"|e ™, ’Tr+7'd$t,

[_ * T_e(fr”d
\ Tr Td

Tr Td

expression(9) takes the form[we neglect the domain

c<(m+7g) ! since it is lower than the minimal wave speed,
see below

VII. CONCLUSION

The discrete spatial connectivity is a natural property of
neural networks that could lead to unexpected features. It is
largely believed that purely excitatory networks do not allow

z+ye=a, (n+1)t<c=<rt

z+e=h, rl=c,

for the propagation of slow traveling pulses. Surprisingly weand the solution is given by

found that considering a discrete spatial connectivity leads to
the existence of a family of slow waves parametrized by the

number of presynaptic units. These slow waves are charac-
terized by a nonmonotonic increase of the voltage before the

threshold is reached, due to a precise arrival of the succes-

1

T[W_i(= ye®) +a]’
. 1r -1
T[Wy(-€™®) +b]’ '

1

(Tr + Td)_l s=C= Tr_
(AL)

<c,

sive EPSPs. The presence of weak noise does not alter our
results, and moreover we show that a moderate amount afhere
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a=1+(r+1y)l7- (Tdﬁ)/(fzgsyr*),
b=1+ (Trﬁ)/(ngsyn),

vy=(1+ Td/Tr)eT'/T— 74l 7.

The critical coupling corresponds to the situation where

maXe(t)}=9=1, which yields

e o1
gsyn_ e(t*) '

wheret” =7+ 7 In[1+(7y4/ 7,)(1—€ 7] is the time to peak of
€, from which we recover Eq(11). Having checked thatf
€ (7, 7, +74), we can introduce this expression in E41) to
obtain the minimal wave speed
. 1
c = —,
W, (- ye?) +a]

wherea’=1+t'/ . It is then easily checked thag? =e%, so

that W_l(—ye‘a*)=—1, and we finally obtain the expected
valuec =1/t".

PHYSICAL REVIEW E 70, 011906(2004)

APPENDIX B: ASYMPTOTIC APPROXIMATION OF THE
FAST WAVE SPEED

For large values o, one expects to obtain large speed
values. Following Ermentrouf4], we expande in Taylor
series about 0 in Eq5). If p is the order of the first nonzero
term in the expansion aof(t) att=0, we have

1
p!cP

1)

+1 ) = !
c” Osyn

whereeP(0) is the derivative of ordep of &(t) att=0. Thus,
we obtain the power law

N
€M) wjjP + O(
=1

P = Kgsyn

whereK is given by

1 N
(p) ip
o 5 (O)Ewu .

K=

Using EQ.(8), K can be expressed with the derivativesaof
att=0 andg=p-1 is the order of the first nonzero term in
the expansion of.
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