216 research outputs found

    Salt and Pepper for Point-of-Care Diagnostics

    Get PDF
    AbstractCurrently available Point-Of-Care-Testing (POCT) devices usually suffer from complex test formats and transduction technologies unfavorable for automation. Among optical sensor technologies, the Reflectometric Interference Spectroscopy (RIfS) is particularly well suited for generating miniaturized, robust and disposable sensors. RIfS systems are not only suitable for diagnostic applications, but are also a good choice for other areas of life-science analytics including biotechnology, food monitoring and safety engineering. Users take advantage of the direct test format by avoiding laborious sample pre-treatment as well as addition of costly reagents, both being common disadvantages of competing test systems

    Bounce-averaged drifts: Equivalent definitions, numerical implementations, and example cases

    Full text link
    In this article we provide various analytical and numerical methods for calculating the average drift of magnetically trapped particles across field lines in complex geometries, and we compare these methods against each other. To evaluate bounce-integrals, we introduce a generalisation of the trapezoidal rule which is able to circumvent integrable singularities. We contrast this method with more standard quadrature methods in a parabolic magnetic well and find that the computational cost is significantly lower for the trapezoidal method, though at the cost of accuracy. With numerical routines in place, we next investigate conditions on particles which cross the computational boundary, and we find that important differences arise for particles affected by this boundary, which can depend on the specific implementation of the calculation. Finally, we investigate the bounce-averaged drifts in the optimized stellarator NCSX. From investigating the drifts, one can readily deduce important properties, such as what subset of particles can drive trapped-particle modes, and in what regions radial drifts are most deleterious to the stability of such modes.Comment: 12 pages, 6 figure

    Enhanced transport at high plasma β\beta and sub-threshold kinetic ballooning modes in Wendelstein 7-X

    Full text link
    The effect of plasma pressure β\beta on ion-temperature-gradient-driven (ITG) turbulence is studied in the Wendelstein 7-X (W7-X) stellarator, showing that subdominant kinetic ballooning modes (KBMs) are unstable well below the ideal MHD threshold and get strongly excited in the quasi-stationary state. By zonal-flow erosion, these highly non-ideal KBMs affect ITG saturation and thereby enable higher heat fluxes. Controlling these KBMs will be essential in order to allow W7-X and future stellarators to achieve maximum performance.Comment: 16 pages, 5 figure

    A flexible system for scheduling drivers

    Get PDF
    A substantial part of the operating costs of public transport is attributable to drivers, whose efficient use therefore is important. The compilation of optimal work packages is difficult, being NP-hard. In practice, algorithmic advances and enhanced computing power have led to significant progress in achieving better schedules. However, differences in labor practices among modes of transport and operating companies make production of a truly general system with acceptable performance a difficult proposition. TRACS II has overcome these difficulties, being used with success by a substantial number of bus and train operators. Many theoretical aspects of the system have been published previously. This paper shows for the first time how theory and practice have been brought together, explaining the many features which have been added to the algorithmic kernel to provide a user-friendly and adaptable system designed to provide maximum flexibility in practice. We discuss the extent to which users have been involved in system development, leading to many practical successes, and we summarize some recent achievements

    Gyrokinetic simulations in stellarators using different computational domains

    Get PDF
    In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.Comment: submitted to Nuclear Fusio

    Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    Get PDF
    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression

    The Inhibitory Role of miR-486-5p on CSC Phenotype Has Diagnostic and Prognostic Potential in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second cause of cancer deaths. Increasing evidences supports the idea that the poor prognosis of patients is related to the presence of cancer stem cells (CSCs), a cell population able to drive cancer recurrence and metastasis. The deregulation of microRNAs (miRNAs) plays a role in the formation of CSC. We investigated the role of hsa-miR-486-5p (miR-486-5p) in CRC, CSCs, and metastasis, in order to reach a better understanding of the biomolecular and epigenetic mechanisms mir-486-5p-related. The expression of miR-486-5p was investigated in three di erent matrices from CRC patients and controls and in CSCs obtained from the CRC cell lines HCT-116, HT-29, and T-84. In the human study, miR-486-5p was up-regulated in serum and stool of CRC patients in comparison with healthy controls but down-regulated in tumor tissue when compared with normal mucosa. miR-486-5p was also down-regulated in the sera of metastatic patients. In vitro, miR-486-5p was down-regulated in CSC models and it induced an inhibitory e ect on stem factors and oncogenes in the main pathways of CSCs. Our results provide a step forward in understanding the role of mir-486-5p in CRC and CSC, and suggest that further studies are needed to investigate its diagnostic and prognostic power, possibly in combination with other biomarkers.Instituto de Salud Carlos III PIE16-00045 DTS19/00145Junta de AndalucíaEuropean Union (EU) SOMM17/6109/UGR (UCE-PP2017-3)Chair "Doctors Galera-Requena in cancer stem cell research" CMC-CTS963Fondazione Banco di Sardegn
    corecore