186 research outputs found

    Synthetic properties of bright metal-poor variables. I. "Anomalous" Cepheids

    Get PDF
    We present new grids of evolutionary models for the so-colled ``Anomalous'' Cepheids (ACs), adopting Z=0.0001 and various assumptions on the progenitor mass and mass-loss efficiency. These computations are combined with the results of our previous set of pulsation models and used to build synthetic populations of the predicted pulsators as well as to provide a Mass-Luminosity relation in the absence of mass-loss. We investigate the effect of mass-loss on the predicted boundaries of the instability strip and we find that the only significant dependence occurs in the Period-Magnitude plane, where the synthetic distribution of the pulsators is, on average, brighter by about 0.1 mag than the one in absence of mass-loss. Tight Period-Magnitude relations are derived in the K band for both fundamental and first overtone pulsators, providing a useful tool for distance evaluations with an intrinsic uncertainty of about 0.15 mag, which decreases to about 0.04 mag if the mass term is taken into account. The constraints provided by the evolutionary models are used to derive evolutionary (i.e, mass-independent) Period-Magnitude-Color relations which provide distance determinations with a formal uncertainty of the order of about 0.1 mag, once the intrinsic colors are well known. We also use model computations from the literature to investigate the effect of metal content both on the instability strip and on the evolutionary Period-Magnitude-Color relations. Finally, we compare our theoretical predictions with observed variables and we confirm that a secure identification of actual ACs requires the simultaneous information on period, magnitude and color, that also provide constraints on the pulsation mode.Comment: accepte

    Variable stars in the globular cluster M28 (NGC 6626)

    Full text link
    We present a new search for variable stars in the Galactic globular cluster M28 (NGC 6626). The search is based on a series of BVI images obtained with the SMARTS Consortium's 1.3m telescope at Cerro Tololo Inter-American Observatory, Chile. The search was carried out using the ISIS v2.2 image subtraction package. We find a total of 25 variable stars in the field of the cluster, 9 being new discoveries. Of the newly found variables, 1 is an ab-type RR Lyrae star, 6 are c-type RR Lyrae, and 2 are long-period/semi-regular variables. V22, previously classified as a type II Cepheid, appears as a bona-fide RRc in our data. In turn, V20, previously classified as an ab-type RR Lyrae, could not be properly phased with any reasonable period. The properties of the ab-type RR Lyrae stars in M28 appear most consistent with an Oosterhoff-intermediate classification, which is unusual for bona-fide Galactic globulars clusters. However, the cluster's c-type variables do not clearly support such an Oosterhoff type, and a hybrid Oosterhoff I/II system is accordingly another possibility, thus raising the intriguing possibility of multiple populations being present in M28. Coordinates, periods, and light curves in differential fluxes are provided for all the detected variables.Comment: A&A, in pres

    Time-Series Photometry of Globular Clusters: M62 (NGC 6266), the Most RR Lyrae-Rich Globular Cluster in the Galaxy?

    Full text link
    We present new time-series CCD photometry, in the B and V bands, for the moderately metal-rich ([Fe/H] ~ -1.3) Galactic globular cluster (GC) M62 (NGC 6266). The present dataset is the largest obtained so far for this cluster, and consists of 168 images per filter, obtained with the Warsaw 1.3m telescope at the Las Campanas Observatory (LCO) and the 1.3m telescope of the Cerro Tololo Inter-American Observatory (CTIO), in two separate runs over the time span of three months. The procedure adopted to detect the variable stars was the optimal image subtraction method (ISIS v2.2), as implemented by Alard. The photometry was performed using both ISIS and DAOPHOT/ALLFRAME. We have identified 245 variable stars in the cluster fields that have been analyzed so far, of which 179 are new discoveries. Of these variables, 133 are fundamental mode RR Lyrae stars (RRab), 76 are first overtone (RRc) pulsators, 4 are type II Cepheids, 25 are long-period variables (LPV), 1 is an eclipsing binary, and 6 are not yet well classified. Such a large number of RR Lyrae stars places M62 among the top two most RR Lyrae-rich (in the sense of total number of RR Lyrae stars present) GCs known in the Galaxy, second only to M3 (NGC 5272) with a total of 230 known RR Lyrae stars. Since this study covers most but not all of the cluster area, it is not unlikely that M62 is in fact the most RR Lyrae-rich GC in the Galaxy. In like vein, we were also able to detect the largest sample of LPV's known in a Galactic GC. We analyze a variety of Oosterhoff type indicators for the cluster, and conclude that M62 is an Oosterhoff type I system. This is in good agreement with the moderately high metallicity of the cluster, in spite of its predominantly blue horizontal branch morphology -- which is more typical of Oosterhoff type II systems. We thus conclude that metallicity plays a key role in defining Oosterhoff type. [abridged]Comment: 22 pages, 14 figures (emulateapj format). AJ, in pres

    Anomalous Cepheids in the Large Magellanic Cloud: Insight into their origin and connection with the star formation history

    Full text link
    Context. The properties of variable stars can give independent constraints on the star formation history of the host galaxy, by determining the age and metallicity of the parent population. Aims. We investigate the pulsation properties of 84 Anomalous Cepheids (ACs) detected by the OGLE-III survey in the Large Magellanic Cloud (LMC), in order to understand the formation mechanism and the characteristics of the parent population they came from. Methods. We used an updated theoretical pulsation scenario to derive the mass and the pulsation mode of each AC in the sample. We also used a Kolmogorov-Smirnov test to analyze the spatial distribution of the ACs, in comparison with that of other groups of variable stars, and connect their properties with the star formation history of the LMC. Results. We find that the mean mass of ACs is 1.2 \pm 0.2Mo. We show that ACs do not follow the same spatial distribution of classical Cepheids. This and the difference in their period-luminosity relations further support the hypothesis that ACs are not the extension to low luminosity of classical Cepheids. The spatial distribution of ACs is also different from that of bona-fide tracers of the old population, such as RR Lyrae stars and population II Cepheids. We therefore suggest that the majority of ACs in the LMC are made of intermediate-age (1-6Gyr), metal-poor single stars. Finally, we investigate the relation between the frequency of ACs and the luminosity of the host galaxy, disclosing that purely old systems follow a very tight relation and that galaxies with strong intermediate-age and young star formation tend to have an excess of ACs, in agreement with their hosting ACs formed via both single and binary star channels.Comment: 10 pages, 7 figures, accepted for publication on A&

    M22: A [Fe/H] Abundance Range Revealed

    Full text link
    Intermediate resolution spectra at the Ca II triplet have been obtained for 55 candidate red giants in the field of the globular cluster M22 with the VLT/FORS instrument. Spectra were also obtained for a number of red giants in standard globular clusters to provide a calibration of the observed line strengths with overall abundance [Fe/H]. For the 41 M22 member stars that lie within the V-V_HB bounds of the calibration, we find an abundance distribution that is substantially broader than that expected from the observed errors alone. We argue that this broad distribution cannot be the result of differential reddening. Instead we conclude that, as has long been suspected, M22 is similar to omega Cen in having an intrinsic dispersion in heavy element abundance. The observed M22 abundance distribution rises sharply to a peak at [Fe/H] = -1.9 with a broad tail to higher abundances: the highest abundance star in our sample has [Fe/H] = -1.45 dex. If the unusual properties of omega Cen have their origin in a scenario in which the cluster is the remnant nucleus of a disrupted dwarf galaxy, then such a scenario likely applies also to M22.Comment: 29 pages, 9 figures, accepted for publication in the Astrophysical Journa

    Stellar Archaeology in the Galactic halo with the Ultra-Faint Dwarfs: VI. Ursa Major II

    Full text link
    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V ~ 15 to V ~ 23.5 mag and extending over a 18 {\times} 18 arcmin2 area centered on the galaxy. Our photometry goes down to about 2 magnitudes below the galaxy's main sequence turn-off, that we detected at V ~ 21.5 mag. We have discovered a bona-fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m-M)0 = 17.70{\pm}0.04{\pm}0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7 {\pm} 0.6 ({\pm} 2.0) kpc. Our photometry shows evidence of a spread in the galaxy subgiant branch, compatible with a spread in metal abundance in the range between Z=0.0001 and Z=0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters (GCs) M68 and M5 ([Fe/H]=-2.27 {\pm} 0.04 dex and -1.33 {\pm} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.Comment: To appear in Ap
    • 

    corecore