71 research outputs found

    Spéciation des organoétains dans les eaux et sédiments du bassin Adour-Garonne

    Get PDF
    De par leurs nombreuses propriétés physico- chimiques, les organoétains sont très utilisés dans l’industrie et en agriculture et entrent dans la composition de nombreux produits domestiques. Ils sont cependant extrêmement toxiques et la Communauté Européenne les a classés parmi les substances prioritaires dans le domaine de l’eau.Un suivi des organoétains a été réalisé sur onze rivières du bassin Adour-Garonne et sur l’estuaire de l’Adour. Ces composés y sont systématiquement présents, les butylétains et les octylétains étant les espèces les plus fréquemment détectées. Les concentrations varient de la limite de détection (0.2-0.5 ng(Sn)/l en moyenne) à 50 ng(Sn)/l dans les eaux, et de 15 à 300 µg(Sn)/kg dans les sédiments dulcicoles. Des pics de contamination ont été observés en fin de printemps et d’été, dans plusieurs rivières. Ils correspondent à la présence des mono- butyl- et -phénylétains principalement, leurs concentrations pouvant atteindre 700 à 900 ng(Sn)/l d’eau. Les rivières les plus contaminées sont la Garonne, le Gave de Pau, l’Adour, la Charente et le Thoré. Dans les matières en suspension de l’estuaire de l’Adour les concentrations atteignent quelques mg(Sn)/kg. L’ensemble des données recueillies a permis de mieux comprendre les origines et le devenir des organoétains dans le cycle hydrologique.Because of their physico-chemical properties, organotin compounds (OTC) are widely used in industry and are present in a significant number of agricultural pesticides and domestic products. They are highly toxic and the European Community has listed them as priority pollutants in the aquatic environment. Organotins have been monitored in the Adour- Garonne basin and the Adour estuary. They are systematically present in the rivers, with butyl- and octyltins being the species most frequently detected. These species, especially octyltins, probably come from the continuous leaching of plastic tubes. The OTC concentrations ranged from just over detection limits (≥ 0.2-0.5 ng (Sn)/L) to 50 ng (Sn)/L in water and from 15 to 300 µg (Sn)/kg in freshwater sediment. Important seasonal variations were also observed. Thus, at the end of spring and summer, very high monophenyltin (MPhT) concentrations of up to 700-900 ng (Sn)/L were found in the dissolved phase. This phenomenon could be partly attributed to specific triphenyltin (TPhT)-based agricultural treatments, MPhT being one of the TPhT degradation products. High monobutyltin (MBT) concentrations of up to 150 ng (Sn)/L were also detected during the same period. This latter compound comes from leaching of plastics and from tri- and di-butyltin (TBT, DBT) degradation. It represents 80 to 100% of the butyl species found in sediments.Considering OTC concentrations, speciation and toxicity, the most contaminated rivers appeared to be the Garonne, Gave de Pau, Adour, Charente and Thoré. Urban activities have significant influence on the levels of OTC contamination for most of the rivers, demonstrating continuous OTC inputs from domestic and industrial treatment plants. This is especially the case for the Charente and Thoré rivers, where some specific industrial activities devoted to leather and wood are present close to the sampling points.A statistical study was performed on the different physico-chemical parameters (temperature, water flow rate, dissolved oxygen concentration) and OTC concentrations. A significant positive correlation between water flow rate and organotin concentrations in the dissolved phase was observed. This correlation was very important when only sampling points far from potential OTC sources were considered, the octyltin concentrations showing the strongest correlation. These observations confirm the presence of a continuous OTC diffusion into aquatic media. A comparison between the present results in Adour-Garonne and OTC monitoring performed in the Rhin- Meuse basin shows that the level of contamination was quite similar in the two basins, especially considering rivers without fluvial traffic. A similar correlation existed between OTC concentrations in the dissolved phase and water flow rate.Special attention was given to the Adour sub-basin because of its particular geographic position and especially the large built-up area in the estuary. Butyltins remain the main OTC compound present, in terms both of frequency and concentration. According to the different sampling points in this sub-basin, mean OTC concentrations in the estuary did not appear to be really influenced by human activities located upstream, the concentrations in this part reaching 50 ng (Sn)/L in the dissolved phase. In contrast, OTC amounts found in the estuary were considerable higher. The built-up area of the estuary had a strong influence on concentrations, which were 6 to 14 times higher in the city centre than those upstream from the city (in an agricultural region). In addition to the influence of local sources, both a strong dilution effect and significant adsorption/ sedimentation phenomena in the downstream region of the estuary could be important. In the suspended matter of the Adour estuary, organotin concentrations were extremely high, reaching concentrations as high as mg (Sn)/kg. Such concentrations have already been reported for nearby regions of the harbour [Bravo et al. (2004)]. However, in the present case, there should be considerable concern considering the possible environmental consequences. The estuarine sediments appeared obviously contaminated by butyltins, but the concentrations were lower than those that could be expected (2000 µg (Sn)/ kg maximum). This observation could be explained by water flow rates as well as the tide, which could export large amounts of suspended matter outside the estuary. MPhT and TPhT were also detected, especially in sediments from the extreme downstream region of the estuary. Their presence could be attributed to the marina. The different solid/ dissolved partition coefficients were also evaluated. These partition coefficients ranged from over 40x104 for sediments up to 200x104 for suspended matter. Finally, the information on the Adour sub-basin showed that the estuary was more strongly contaminated than the upstream region.Generally, all these data have contributed to the first evaluation of OTC contamination in the Adour-Garonne basin, and identified organotin sources. The statistical study, comparisons between the different parts of the aquatic environment, and the observation of solid/ liquid distributions lead to a better understanding of the environmental fate of OTCs. Even if differences exist between the level of contamination in freshwater and estuarine environments, the ubiquitous presence of OTC must remain a subject of concern, especially with regard to the high toxicity of organotins. For example, TBT and TPhT have lethal effects on trout and algal species at aquatic concentrations in the µg (Sn)/L range or even below this concentration [TOOBY et al. (1975), WONG et al. (1982)]. Considering this high toxicity, other studies will have to be performed in order to increase the current database concerning OTC in rivers. It is also important to know the conditions that control OTC uptake by biota, and in order to propose effective environmental management strategies

    Mise au point de techniques analytiques pour la spéciation du sélénium dans les boues de stations d'épuration d'eaux résiduaires urbaines

    Get PDF
    Les stations d'épuration d'eaux résiduaires sont une des étapes du cycle du sélénium dans l'environnement et contribuent à sa redistribution dans le milieu naturel. Très peu étudié jusqu'à présent dans ces milieux, le sélénium n'en est pas moins un élément très important du point de vue écotoxicologique, sa teneur dans les boues de stations d'épuration destinées à l'épandage agricole faisant par ailleurs l'objet d'une norme.Nous avons mis au point des techniques permettant la détermination spécifique de l'élément total dans ce type d'échantillon, par minéralisation classique ou assistée par micro-ondes et dosage par Voltamétrie de Redissolution Cathodique Différentielle Pulsée (DPCSV) et Spectrométrie d'Absorption Atomique ElectroThermique (ETAAS). Le contrôle qualité a été effectué sur deux échantillons certifiés fournis par le Bureau Communautaire de Référence (BCR) : la boue CRM 145 R et la boue CRM 007.Cependant, lorsqu'on parle de risque toxicologique, il est important de s'intéresser à la détermination des différentes formes sous lesquelles cet élément peut être présent. Nous avons pour cela réalisé des extractions parallèles (spéciation de phases) du sélénium contenu dans les boues afin de déterminer quel pourcentage du sélénium total est réellement et potentiellement disponible pour les végétaux lors d'un épandage sur sol agricole. La spéciation d'espèces a été brièvement abordée dans le but de déterminer les teneurs en Se(IV) et Se(VI), espèces les plus toxiques.The great effort undertaken for about twenty years to improve the quality of surface waters has led to the construction of numerous waste water treatment plants, generating an increasing amount of sludge. Waste water and sludge treatment processes represent an important point in the hydrological cycle at which the disposal of substantial quantities of trace elements to the environment may be regulated. From the law on waste recovery and disposal in 1975 to the European guideline about wastes in 1991, the priority has been given to waste recovery and recycling. With increasing pressure to ban all sludge dumping at sea, and considering the prohibitive costs of land-filling and incineration, there is a great tendency to dispose of sludge on land (40% in 1988 to 60% in 1992).Although numerous studies have demonstrated the intrinsic value of sludge for soil amendment, given its nitrogen, phosphorus and homogeneous organic matter content, evidence has accumulated in recent years that numerous environmental problems can arise because of the presence in sludges of high amounts of certain trace elements (potentially toxic to plants and to human beings and liable to be concentrated along the food chain), among which selenium is particularly interesting.Selenium presents a complex case, as it is also an essential element for living organisms (including humans). The amendment with sewage sludge is sometimes used to increase the selenium content in crops, and afterwards in cattle, when there is a proven lack of this element in a given place. Nevertheless the boundary between essentiality and toxicity is relatively narrow and is expressed at trace levels. It is thus particularly important to survey the selenium concentrations encountered in sewage sludge, especially as guidelines and regulations concerning these data will probably be strengthened. Presently, in France, sludge must not contain more than 200 mg Se·kg-1 dry weight and must not be used on soils containing more than 10 mg Se·kg-1 dry weight (AFNOR U 44-041 norm). This norm concerns only the total amount of selenium contained in sludge and does not take into account the different species (organic and inorganic Se(-II), Se(0), Se(IV) and Se(VI)) that could be present.First of all we had to develop methods for the classical and microwave-assisted wet digestion of sewage sludge, and the determination of their total selenium concentration by Differential Pulse Cathodic Stripping Voltammetry (DPCSV) and ElectroThermal Atomic Absorption Spectrometry (ETAAS). Quality assurance involved the analysis of two BCR (Community Bureau of Reference) certified sewage sludge reference materials (CRM 145 R and CRM 007) and the different techniques were then applied to natural samples from a representative French sewage treatment plant located in the city of Tarbes (South-West of France). The mixture HNO3-H2O2-H2O led to the best results for the digestion and analysis of certified samples, caused few problems for the analysis by DPCSV and ETAAS, and was therefore retained. The decrease of the digestion duration obtained by the use of microwaves was particularly interesting (from one to three days on a hot plate to less than one hour by the Microdigest 301 (PROLABO, France)), and reproducibility was also acceptable (between 3 and 10%). Concentrations obtained for the sewage sludge from the Tarbes treatment plant were very much lower than those for NF U 44-041: 1.08±0.11 mg Se·kg-1 dry weight.However knowledge of speciation, that is to say the determination of the different physicochemical forms of selenium present in a given medium, is necessary when speaking of the toxicological risk represented by an element. The mobility of selenium and its toxicity to the biosphere are related to its association with various sludge or soil constituents as well as to its total concentration. "Soft" or partial extraction techniques are necessary when the aim of the study to determine trace element speciation. The extractants used must separate selenium from the matrix without inducing any loss or change in the partitioning of individual chemical species. In parallel extractions the mechanisms involved for each extractant must correspond to processes occurring in nature and are then associated with special fractions of selenium: soluble, exchangeable, "oxidizable", and "mineral" fractions .Parallel extractions with three types of extractants were chosen for this study and applied first to CRM 007: warm water (soluble fraction), ammonium phosphate-citric acid (soluble + exchangeable fraction) and sodium hydroxide (soluble + exchangeable + "oxidizable" fraction). The soluble, exchangeable, "oxidizable" and "mineral" fractions represent respectively : 11%, 14%, 39% and 36%. The same procedure was then applied to natural samples from Tarbes giving the following results: 36% soluble, 22% exchangeable, 42% "oxidizable". The sodium hydroxide extraction procedure allowed us to extract the entire Se content of this sludge (1.07±0.03 mg Se·kg-1 dry weight), showing that all the selenium present is potentially available after agricultural land application. It was then possible in this fraction to deal with the species speciation of selenium by the mean of a separation of inorganic and organic species on an Amberlite CG-400 resin and a specific analysis by DPCSV. Se(IV) and Se(VI) represent respectively between 30 and 40% and between 2 and 20% of total selenium in the sludges from Tarbes

    Non-purged voltammetry explored with AGNES

    Get PDF
    The reduction of oxygen increases pH in the surroundings of an electrode. A theoretical model estimates the steady-state pH profile from the surface of the electrode up to the bulk solution. A very simple formula predicts that, in non-deareated solutions, for bulk pH-values between 4.0 and 10.0, the corresponding surface pH could be as high as 10.3, regardless of the thickness of the diffusion layer and composition of the sample (except if it has a buffering capacity). For bulk pH lower than 3.0 or higher than 10, pH increases are negligible. Less steep pH-profiles are obtained with buffers (such as MOPS 0.01 M or MES 0.01 M). The change in surface pH modifies the local speciation and hinders the standard interpretation of voltammetric responses. The electroanalytical technique Absence of Gradients and Nernstian Equilibrium Stripping (AGNES), implemented with Screen Printed Electrodes (SPE), provides experimental insights into this phenomenon. AGNES probes the free metal concentration at the electrode surface, from which the surface pH can be estimated for systems of known composition. These estimations agree with the theoretical model for the assayed systems. Additionally, the quantification of the bulk free Zn2+ and Cd2+ concentrations with specific modifications of AGNES for non-purged synthetic solutions is discussed. In general, more accurate determinations of the bulk free metal concentrations in non-purged solutions are expected: i) when the calibration is performed in a medium where the pH increase induces similar changes in the surface free metal concentration and in the sample solution and ii) when the system is more buffered.This work was financially supported by the Spanish Ministry of Education and Science (Projects CTQ2009-07831, CTM2009-14612 and CTM2012-39183), from the “Comissionat per a Universitats i Recerca del Departament d'Innovació, Universitats i Empresa de la Generalitat de Catalunya”

    Inorganic Mass Spectrometry

    Get PDF
    To establish a method for sensitive, accurate, and precise determination of Se in real samples, isotope dilution analysis using high-power nitrogen microwave-induced plasma mass spectrometry (N 2 MIP-IDMS) was conducted. In this study, freeze-dried human blood serum (Standard Reference Material, NIES No. 4) provided by NIES (National Institute for Environmental Studies) was used as a real sample. The measured isotopes of Se were 78 Se and 80 Se which are the major isotopes of Se. The appropriate amount of a Se spike solution was theoretically calculated by using an error multiplication factor (F) and was confirmed experimentally for the isotope dilution analysis. The mass discrimination effect was corrected for by using a standard Se solution for the measurement of Se isotope ratios in the spiked sample. However, the sensitivity for the detection of Se was not so good and the precision of the determination was not improved (2-3%) by N 2 MIP-IDMS with use of the conventional nebulizer. Therefore, a hydride generation system was connected to N 2 MIP-IDMS as a sample introduction system (HG-N 2 MIP-IDMS) in order to establish a more sensitive detection and a more precise determination of Se. A detection limit (3σ) of 10 pg mL -1 could be achieved, and the RSD was less than 1% at the concentration level of 5.0-10.0 ng mL -1 by HG-N 2 MIP-IDMS. The analytical results were found to be in a good agreement with those obtained by the standard addition method using conventional Ar ICPMS. It is well-known that Se is an essential element for all mammals. Se deficiency leads to deficiency syndromes, for example, Keshan disease, which is known for cardiac insufficiency that occurred in children and pregnant women in China. Problems also occur if the concentration of Se is too high; for example, gastroenteric disorders, dermatitis, and neurotic disorders are caused by excessive intake of Se. Moreover, it is well-known that the range of permissive intake amounts of Se is very narrow for human beings. Therefore, it is restricted as a toxic element in environmental standards. There are several sources of environmental Se pollution: the processes of Se refinement and the production processes of Se-containing products. For these reasons, the accurate and precise determination of trace levels of Se in environmental and biological samples is required, and studies of Se determination have been reported by several groups. [1][2][3][4][5][6][7][8][9][10][11] Because Ar ICPMS can measure multiple elements at a concentration range from ng mL -1 to fg mL -1 , it has widespread use in the determination of trace elements in various samples. 12-25 However
    corecore