692 research outputs found

    Ku80 removal from DNA through double strand break–induced ubiquitylation

    Get PDF
    The Ku70/Ku80 heterodimer, or Ku, is the central component of the nonhomologous end joining (NHEJ) pathway of double strand break (DSB) repair. Because Ku forms a ring through which the DSB threads, it likely becomes topologically attached to DNA during repair. The mechanism for its removal was unknown. Using a method to identify proteins recruited to DSBs in Xenopus laevis egg extract, we show that DSB-containing DNAs accumulate members of the Skp1–Cul1–F-box complex and K48-linked polyubiquitylated proteins in addition to known repair proteins. We demonstrate that Ku80 is degraded in response to DSBs in a ubiquitin-mediated manner. Strikingly, K48-linked polyubiquitylation, but not proteasomal degradation, is required for the efficient removal of Ku80 from DNA. This removal is DNA length dependent, as Ku80 is retained on duplex oligonucleotides. Finally, NHEJ completion and removal of Ku80 from DNA are independent from one another. We propose that DSB-induced ubiquitylation of Ku80 provides a mechanism to efficiently eliminate Ku from DNA for pre- and postrepair processes

    The Great Debate at "Melanoma Bridge", Naples, December 7th, 2019.

    Get PDF
    The Great Debate session at the 2019 Melanoma Bridge congress (December 5-7, Naples, Italy) featured counterpoint views from experts on five topical issues in melanoma. These were whether to choose local intratumoral treatment or systemic treatment, whether patients with stage IIIA melanoma require adjuvant therapy or not, whether treatment is better changed at disease progression or during stable disease, whether adoptive cell transfer (ACT) therapy is more appropriate used before or in combination with checkpoint inhibition therapy, and whether treatment can be stopped while the patient is still on response. As was the case for previous meetings, the debates were assigned by meeting Chairs. As such, positions taken by each of the melanoma experts during the debates may not have reflected their respective personal approach

    Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience.

    Get PDF
    BACKGROUND: Uveal melanoma exhibits a high incidence of metastases; and, to date, there is no systemic therapy that clearly improves outcomes. The anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) antibody ipilimumab is a standard of care for metastatic melanoma; however, the clinical activity of CTLA-4 inhibition in patients with metastatic uveal melanoma is poorly defined. METHODS: To assess ipilimumab in this setting, the authors performed a multicenter, retrospective analysis of 4 hospitals in the United States and Europe. Clinical characteristics, toxicities, and radiographic disease burden, as determined by central, blinded radiology review, were evaluated. RESULTS: Thirty-nine patients with uveal melanoma were identified, including 34 patients who received 3 mg/kg ipilimumab and 5 who received 10 mg/kg ipilimumab. Immune-related response criteria and modified World Health Organization criteria were used to assess the response rate (RR) and the combined response plus stable disease (SD) rate after 12 weeks, after 23 weeks, and overall (median follow-up, 50.4 weeks [12.6 months]). At week 12, the RR was 2.6%, and the response plus SD rate was 46.%; at week 23, the RR was 2.6%, and the response plus SD rate was 28.2%. There was 1 complete response and 1 late partial response (at 100 weeks after initial SD) for an immune-related RR of 5.1%. Immune-related adverse events were observed in 28 patients (71.8%) and included 7 (17.9%) grade 3 and 4 events. Immune-related adverse events were more frequent in patients who received 10 mg/kg ipilimumab than in those who received 3 mg/kg ipilimumab. The median overall survival from the first dose of ipilimumab was 9.6 months (95% confidence interval, 6.3-13.4 months; range, 1.6-41.6 months). Performance status, lactate dehydrogenase level, and an absolute lymphocyte count ≥ 1000 cells/μL at week 7 were associated significantly with survival. CONCLUSIONS: In this multicenter, retrospective analysis of 4 hospitals in the United States and Europe of patients with uveal melanoma, durable responses to ipilimumab and manageable toxicity were observed

    RecG interacts directly with SSB: implications for stalled replication fork regression

    Get PDF
    RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To define the roles of these proteins in fork regression, we used a combination of assays to determine whether RecG, RuvAB or both are capable of acting at a stalled fork. The results show that RecG binds to the C-terminus of single-stranded DNA binding protein (SSB) forming a stoichiometric complex of 2 RecG monomers per SSB tetramer. This binding occurs in solution and to SSB protein bound to single stranded DNA (ssDNA). The result of this binding is stabilization of the interaction of RecG with ssDNA. In contrast, RuvAB does not bind to SSB. Side-by-side analysis of the catalytic efficiency of the ATPase activity of each enzyme revealed that (−)scDNA and ssDNA are potent stimulators of the ATPase activity of RecG but not for RuvAB, whereas relaxed circular DNA is a poor cofactor for RecG but an excellent one for RuvAB. Collectively, these data suggest that the timing of repair protein access to the DNA at stalled forks is determined by the nature of the DNA available at the fork. We propose that RecG acts first, with RuvAB acting either after RecG or in a separate pathway following protein-independent fork regression

    The need for a network to establish and validate predictive biomarkers in cancer immunotherapy.

    Get PDF
    Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently, the entire medical oncology field has been revolutionized by the introduction of immune checkpoints inhibitors. Despite success in a variety of malignancies, responses typically only occur in a small percentage of patients for any given histology or treatment regimen. There are also concerns that immunotherapies are associated with immune-related toxicity as well as high costs. As such, identifying biomarkers to determine which patients are likely to derive clinical benefit from which immunotherapy and/or be susceptible to adverse side effects is a compelling clinical and social need. In addition, with several new immunotherapy agents in different phases of development, and approved therapeutics being tested in combination with a variety of different standard of care treatments, there is a requirement to stratify patients and select the most appropriate population in which to assess clinical efficacy. The opportunity to design parallel biomarkers studies that are integrated within key randomized clinical trials could be the ideal solution. Sample collection (fresh and/or archival tissue, PBMC, serum, plasma, stool, etc.) at specific points of treatment is important for evaluating possible biomarkers and studying the mechanisms of responsiveness, resistance, toxicity and relapse. This white paper proposes the creation of a network to facilitate the sharing and coordinating of samples from clinical trials to enable more in-depth analyses of correlative biomarkers than is currently possible and to assess the feasibilities, logistics, and collated interests. We propose a high standard of sample collection and storage as well as exchange of samples and knowledge through collaboration, and envisage how this could move forward using banked samples from completed studies together with prospective planning for ongoing and future clinical trials

    Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 3rd-5th, 2020, Italy)

    Get PDF
    Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd–5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Ideas in the Hispanic Caribbean in the nineteenth century: The antillanismo as emancipatory and integration ideal

    Get PDF
    En la compleja y conflictiva realidad del Caribe hispano del siglo XIX, emerge un conjunto de ideas que se organizan en torno de la voluntad de independencia, de libertad y autoafirmación política y cultural, de integración antillana y nuestroamericana. Ideas que pueden ser sintetizadas en el término antillanismo. Fueron esgrimidas en oposición al colonialismo y al imperialismo y fundamentadas desde posiciones filosóficas que abarcaron un amplio espectro, desde la ilustración al positivismo y el krausismo. Su originalidad radica en haber constituido una trama discursiva ligada dialécticamente a los acontecimientos de la situación social e histórica que buscaba comprender y transformar.In the Spanish Caribbean complex and conflicting realities of nineteenth–century, grows a set of ideas that are organized around the desire for independence, freedom, political and cultural self–assertion and integration. These ideas can be summarized in the term antillanismo. They were put forward in opposition to colonialism and imperialism and reasoned from philosophical positions that covered a wide spectrum, from illustration to positivism and krausism. Its originality lies in having formed a discursive frame dialectically linked to the events of the socio–historical situation that sought to understand and transform.Fil: Arpini, Adriana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentin
    corecore