1,098 research outputs found
Control of coherent backscattering by breaking optical reciprocity
Reciprocity is a universal principle that has a profound impact on many areas
of physics. A fundamental phenomenon in condensed-matter physics, optical
physics and acoustics, arising from reciprocity, is the constructive
interference of quantum or classical waves which propagate along time-reversed
paths in disordered media, leading to, for example, weak localization and
metal-insulator transition. Previous studies have shown that such coherent
effects are suppressed when reciprocity is broken. Here we show that by
breaking reciprocity in a controlled manner, we can tune, rather than simply
suppress, these phenomena. In particular, we manipulate coherent backscattering
of light, also known as weak localization. By utilizing a non-reciprocal
magneto-optical effect, we control the interference between time-reversed paths
inside a multimode fiber with strong mode mixing, and realize a continuous
transition from the well-known peak to a dip in the backscattered intensity.
Our results may open new possibilities for coherent control of classical and
quantum waves in complex systemsComment: Comments are welcom
Photo-assisted shot noise in Coulomb interacting systems
We consider the fluctuations of the electrical current (shot noise) in the
presence of a voltage time-modulation. For a non-interacting metal, it is known
that the derivative of the photo-assisted noise has a staircase behavior. In
the presence of Coulomb interactions, we show that the photo-assisted noise
presents a more complex profile, in particular for the two following systems:
1) a two-dimensional electron gas in the fractional quantum Hall regime for
which we have obtained evenly spaced singularities in the noise derivative,
with a spacing related to the filling factor and, 2) a carbon nanotube for
which a smoothed staircase in the noise derivative is obtained.Comment: Proceedings of the 6th Rencontres du Vietnam, Hanoi (2006
Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport
While the absorption of light is ubiquitous in nature and in applications,
the question remains how absorption modifies the transmission channels in
random media. We present a numerical study on the effects of optical absorption
on the maximal transmission and minimal reflection channels in a
two-dimensional disordered waveguide. In the weak absorption regime, where the
system length is less than the diffusive absorption length, the maximal
transmission channel is dominated by diffusive transport and it is equivalent
to the minimal reflection channel. Its frequency bandwidth is determined by the
underlying quasimode width. However, when the absorption is strong, light
transport in the maximal transmission channel undergoes a sharp transition and
becomes ballistic-like transport. Its frequency bandwidth increases with
absorption, and the exact scaling varies with the sample's realization. The
minimal reflection channel becomes different from the maximal transmission
channel and becomes dominated by absorption. Counterintuitively, we observe in
some samples that the minimum reflection eigenvalue increases with absorption.
Our results show that strong absorption turns open channels in random media
from diffusive to ballistic-like.Comment: 11 pages, 7 figure
Turning Optical Complex Media into Universal Reconfigurable Linear Operators by Wavefront Shaping
Performing linear operations using optical devices is a crucial building
block in many fields ranging from telecommunication to optical analogue
computation and machine learning. For many of these applications, key
requirements are robustness to fabrication inaccuracies and reconfigurability.
Current designs of custom-tailored photonic devices or coherent photonic
circuits only partially satisfy these needs. Here, we propose a way to perform
linear operations by using complex optical media such as multimode fibers or
thin scattering layers as a computational platform driven by wavefront shaping.
Given a large random transmission matrix (TM) representing light propagation in
such a medium, we can extract a desired smaller linear operator by finding
suitable input and output projectors. We discuss fundamental upper bounds on
the size of the linear transformations our approach can achieve and provide an
experimental demonstration. For the latter, first we retrieve the complex
medium's TM with a non-interferometric phase retrieval method. Then, we take
advantage of the large number of degrees of freedom to find input wavefronts
using a Spatial Light Modulator (SLM) that cause the system, composed of the
SLM and the complex medium, to act as a desired complex-valued linear operator
on the optical field. We experimentally build several
complex-valued operators, and are able to switch from one to another at will.
Our technique offers the prospect of reconfigurable, robust and
easy-to-fabricate linear optical analogue computation units
Binary holograms for shaping light with digital micromirror devices
Digital micromirror devices are a popular type of spatial light modulators
for wavefront shaping applications. While they offer several advantages when
compared to liquid crystal modulators, such as polarization insensitivity and
rapid-switching, they only provide a binary amplitude modulation. Despite this
restriction, it is possible to use binary holograms to modulate both the
amplitude and phase of the incoming light, thus allowing the creation of
complex light fields. Here, a didactic exploration of various types of binary
holograms is presented. A particular emphasis is placed on the fact that the
finite number of pixels coupled with the binary modulation limits the number of
complex values that can be encoded into the holograms. This entails an
inevitable trade-off between the number of complex values that can be modulated
with the hologram and the number of independent degrees of freedom available to
shape light, both of which impact the quality of the shaped field. Nonetheless,
it is shown that by appropriately choosing the type of hologram and its
parameters, it is possible to find a suitable compromise that allows shaping a
wide range of complex fields with high accuracy. In particular, it is shown
that choosing the appropriate alignment between the hologram and the
micromirror array allows for maximizing the number of complex values. Likewise,
the implications of the type of hologram and its parameters on the diffraction
efficiency are also considered
The Schr\"odinger operator on an infinite wedge with a tangent magnetic field
We study a model Schr\"odinger operator with constant magnetic field on an
infinite wedge with Neumann boundary condition. The magnetic field is assumed
to be tangent to a face. We compare the bottom of the spectrum to the model
spectral quantities coming from the regular case. We are particularly motivated
by the influence of the magnetic field and the opening angle of the wedge on
the spectrum of the model operator and we exhibit cases where the bottom of the
spectrum is smaller than in the regular case. Numerical computations enlighten
the theoretical approach
- …