1,520 research outputs found

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Variation of parameters in Becke‐3 hybrid exchange‐correlation functional

    Get PDF
    We have investigated the consequences of varying the three parameters in Becke's hybrid exchange‐correlation functional, which includes five contributions: Hartree–Fock exchange, local exchange, Becke's gradient exchange correction, local correlation, and some form of gradient correlation correction. Our primary focus was upon obtaining orbital energies with magnitudes that are reasonable approximations to the electronic ionization potentials; however, we also looked at the effects on molecular geometries and atomization enthalpies. A total of 12 parameter combinations was considered for each of three different gradient correlation corrections: the Lee–Yang–Parr, the Perdew‐86, and the Perdew–Wang 91. Five molecules were included in the study: HCN, N2, N2O, F2O, and H2O. For comparison, a Hartree–Fock calculation was also carried out for each of these. The 6‐31+G** basis set was used

    A Lattice Study of Spectator Effects in Inclusive Decays of B-Mesons

    Get PDF
    We compute the matrix elements of the operators which contribute to spectator effects in inclusive decays of BB-mesons. The results agree well with estimates based on the vacuum saturation (factorization) hypothesis. For the ratio of lifetimes of charged and neutral mesons we find τ(B)/τ(Bd)=1.03±0.02±0.03\tau(B^-)/\tau(B_d)=1.03\pm 0.02\pm 0.03, where the first error represents the uncertainty in our evaluation of the matrix elements, and the second is an estimate of the uncertainty due to the fact that the Wilson coefficient functions have only been evaluated at tree-level in perturbation theory. This result is in agreement with the experimental measurement. We also discuss the implications of our results for the semileptonic branching ratio and the charm yield.Comment: 25 pages (figures are included). Revised version (some numerical integrals have been recomputed

    Color Confinement and Massive Gluons

    Full text link
    Color confinement is one of the central issues in QCD so that there are various interpretations of this feature. In this paper we have adopted the interpretation that colored particles are not subject to observation just because colored states are unphysical in the sense of Eq. (2.16). It is shown that there are two phases in QCD distinguished by different choices of the gauge parameter. In one phase, called the "confinement phase", color confinement is realized and gluons turn out to be massive. In the other phase, called the "deconfinement phase", color confinement is not realized, but the gluons remain massless.Comment: 14 page

    QCD Factorization for BππB\to\pi\pi Decays: Strong Phases and CP Violation in the Heavy Quark Limit

    Full text link
    We show that, in the heavy quark limit, the hadronic matrix elements that enter BB meson decays into two light mesons can be computed from first principles, including `non-factorizable' strong interaction corrections, and expressed in terms of form factors and meson light-cone distribution amplitudes. The conventional factorization result follows in the limit when both power corrections in 1/mb1/m_b and radiative corrections in αs\alpha_s are neglected. We compute the order-αs\alpha_s corrections to the decays Bdπ+πB_d\to\pi^+\pi^-, Bdπ0π0B_d\to\pi^0\pi^0 and B+π+π0B^+\to\pi^+\pi^0 in the heavy quark limit and briefly discuss the phenomenological implications for the branching ratios, strong phases and CP violation.Comment: 6 pages, 1 figur

    Molecular dynamics simulations of liquid nitromethane

    Get PDF
    A potential energy function with harmonic intramolecular and Lennard-Jones plus Coulombic intermolecular terms was tested in molecular dynamics simulations of liquid nitromethane. Parameter values were adjusted iteratively until satisfactory agreement with density functional pair calculations and experimental data was achieved. The properties computed using the NVT and NPT ensembles were the heat of vaporization, dielectric constant, self-diffusion coefficient, density, heat capacity at constant pressure, pair correlation functions, single molecule and collective dipole moment reorientation times, the vibrational spectrum, and the effect of increasing pressure upon the C−N stretching frequency. Overall, the results were in reasonable accord with experimental results, the greatest discrepancy being for the dielectric constant. It was concluded, on the basis of the reorientation times and the calculated molecular
    corecore