47 research outputs found

    A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (<it>CDMP1</it>) gene cause Grebe-type chondrodysplasia.</p> <p>Methods</p> <p>Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to <it>CDMP1 </it>locus on chromosome 20q11.22. To screen for a mutation in <it>CDMP1 </it>gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.</p> <p>Results</p> <p>Genotyping results showed linkage of the family to <it>CDMP1 </it>locus. Sequence analysis of the <it>CDMP1 </it>gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.</p> <p>Conclusion</p> <p>We describe a 4 bp novel insertion mutation in <it>CDMP1 </it>gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of <it>CDMP1 </it>in the development of limbs.</p

    Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    Get PDF
    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)

    Brachydactyly

    Get PDF
    Brachydactyly ("short digits") is a general term that refers to disproportionately short fingers and toes, and forms part of the group of limb malformations characterized by bone dysostosis. The various types of isolated brachydactyly are rare, except for types A3 and D. Brachydactyly can occur either as an isolated malformation or as a part of a complex malformation syndrome. To date, many different forms of brachydactyly have been identified. Some forms also result in short stature. In isolated brachydactyly, subtle changes elsewhere may be present. Brachydactyly may also be accompanied by other hand malformations, such as syndactyly, polydactyly, reduction defects, or symphalangism

    A cell-free approach to accelerate the study of protein-protein interactions in vitro

    No full text
    Protein-protein interactions are highly desirable targets in drug discovery, yet only a fraction of drugs act as binding inhibitors. Here, we review the different technologies used to find and validate protein-protein interactions. We then discuss how the novel combination of cell-free protein expression, AlphaScreen and single-molecule fluorescence spectroscopy can be used to rapidly map protein interaction networks, determine the architecture of protein complexes, and find new targets for drug discovery

    Acromesomelic dysplasia Maroteaux type maps to human chromosome 9.

    Get PDF
    Acromesomelic dysplasias are skeletal disorders that disproportionately affect the middle and distal segments of the appendicular skeleton. We report genetic mapping studies in four families with acromesomelic dysplasia Maroteaux type (AMDM), an autosomal recessive osteochondrodysplasia. A peak LOD score of 5.1 at recombination fraction 0 was obtained with fully informative markers on human chromosome 9. In three of the four families, the affected offspring are products of consanguineous marriages; if it is assumed that these affected offspring are homozygous by descent for the region containing the AMDM locus, a 6.9-cM AMDM candidate interval can be defined by markers D9S1853 and D9S1874. The mapping of the AMDM locus to human chromosome 9 indicates that AMDM is genetically distinct from the two other mapped acromesomelic dysplasias, Hunter-Thompson type and Grebe type, which are caused by mutations in CDMP1 on human chromosome 20

    Rapid mapping of interactions between human SNX-BAR proteins measured in vitro by AlphaScreen and single-molecule spectroscopy

    No full text
    Protein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins. We have applied this approach to the family of BAR domain-containing sorting nexin (SNX-BAR) proteins, which are essential regulators of membrane trafficking and remodeling in all eukaryotes. Dimerization of BAR domains is essential for creating a concave structure capable of sensing and inducing membrane curvature. We have systematically mapped 144 pair-wise interactions between the human SNX-BAR proteins and generated an interaction matrix of preferred dimerization partners for each family member. We find that while nine SNX-BAR proteins are able to form homo-dimers, several including the retromer-associated SNX1, SNX2, and SNX5 require heteromeric interactions for dimerization. SNX2, SNX4, SNX6, and SNX8 show a promiscuous ability to bind other SNX-BAR proteins and we also observe a novel interaction with the SNX3 protein which lacks the BAR domain structure

    Metabolomics Analysis Identifies Intestinal Microbiota-Derived Biomarkers of Colonization Resistance in Clindamycin-Treated Mice

    No full text
    <div><p>Background</p><p>The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment.</p><p>Methods</p><p>To assess <i>in vivo</i> colonization resistance, mice were challenged with oral vancomycin-resistant <i>Enterococcus</i> or <i>Clostridium difficile</i> spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam.</p><p>Results</p><p>Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families <i>Lachnospiraceae</i> and <i>Ruminococcaceae</i>, both part of the phylum <i>Firmicutes</i>. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30%) exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of <i>in vivo</i> colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites) or decreased (pentoses, dipeptides) with clindamycin treatment. Piperacillin/tazobactam treatment caused similar alterations in the intestinal microbiota and fecal metabolites.</p><p>Conclusions</p><p>Recovery of colonization resistance after antibiotic treatment coincided with restoration of several fecal bacterial metabolites. These metabolites could provide useful biomarkers indicating intact or disrupted colonization resistance during and after antibiotic treatment.</p></div

    Recovery of the fecal microbiota over time in piperacillin/tazobactam treated animals.

    No full text
    <p>Mice received subcutaneous piperacillin/tazobactam (n = 4) or normal saline (n = 4) for 3 days. Quantitative real-time PCR was used to measure fecal bacterial DNA in fecal specimens collected either before treatment or 1, 7 or 14 days following treatment. The y-axis shows the quantity of amplified DNA detected per 1 ng of template DNA. Red circles, mean values for clindamycin-treated mice. Black squares, mean values for control mice. * <i>p</i><0.05. Symbols indicate differences between the experimental and control groups for individual time points. Error bars represent standard error.</p

    Changes in levels of fecal metabolites of clindamycin-treated mice compared to saline controls for selected compounds that exhibited a sustained increase or decrease after clindamycin treatment.

    No full text
    <p>Compounds from pathways related to metabolism of (A) creatinine, (B) bile salts, (C) phytoestrogens, (D) N-acetylated amino acids and (E) short-chain fatty acids. Results from experimental mice are shown on the left and from control animals on the right. Metabolites measured in the experimental group are the significantly different (<i>p</i>≤0.05) from the pre-treatment levels at least through day 8 after the final clindamycin dose for all compounds except N-acetyl-aspartate (<i>p</i>≤0.10 at days 5, 8; <i>p</i>≤0.5 all other times). Error bars represent standard error.</p
    corecore