4 research outputs found

    Stable optical trapping and sensitive characterization of nanostructures using standing- wave Raman tweezers

    Get PDF
    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints

    Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps

    Get PDF
    An experimental characterization of the three-dimensional (3D) position and force constants, acting on one or multiple trapped polystyrene beads in a weak counterpropagating beams geometry is reported. The 3D position of the trapped particles is tracked by imaging with two synchronized CMOS cameras from two orthogonal views and used to determine the stiffness along all three spatial directions through power spectrum analysis and the equipartition method. For the case of three trapped beads we measure the dependence of the force constants on the counterpropagating beams waist separation. The maximal transverse stiffnesses, is about 0.1 pN/µm per mW at a beam waist separation of 67 µm whereas the longitudinal stiffness is approximately 20 times lower. The experimental findings are in reasonable agreement with a recent physical-geometric optics calculation
    corecore