12 research outputs found

    Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways

    No full text
    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes

    A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity

    No full text
    At least two components that modulate plant resistance against the fungal powdery mildew disease are ancient and have been conserved since the time of the monocot–dicot split (≈200 Mya). These components are the seven transmembrane domain containing MLO/MLO2 protein and the syntaxin ROR2/PEN1, which act antagonistically and have been identified in the monocot barley (Hordeum vulgare) and the dicot Arabidopsis thaliana, respectively. Additionally, syntaxin-interacting N-ethylmaleimide sensitive factor adaptor protein receptor proteins (VAMP721/722 and SNAP33/34) as well as a myrosinase (PEN2) and an ABC transporter (PEN3) contribute to antifungal resistance in both barley and/or Arabidopsis. Here, we show that these genetically defined defense components share a similar set of coexpressed genes in the two plant species, comprising a statistically significant overrepresentation of gene products involved in regulation of transcription, posttranslational modification, and signaling. Most of the coexpressed Arabidopsis genes possess a common cis-regulatory element that may dictate their coordinated expression. We exploited gene coexpression to uncover numerous components in Arabidopsis involved in antifungal defense. Together, our data provide evidence for an evolutionarily conserved regulon composed of core components and clade/species-specific innovations that functions as a module in plant innate immunity
    corecore