651 research outputs found
Two lectures on flute related topics : "Historical flutists and flute data" & "Baroque ornament guide"
Includes bibliographical references.This thesis contains the handouts which accompanied two lectures that were presented to the flute students of Northern Illinois University. These lectures were entitled “Historical Flutists and Flute Data” and “Baroque Ornament Guide” and were given on October 4, 1988 and April 24, 1988, respectively. The first lecture traced the development of the present day flute. The handouts compare different types of flutes with the famous flutists that used them and puts these people in a historical reference with famous composers. The second lecture was an introduction to Baroque ornamentation and embellishment. The handout contains musical examples that can be used as a reference source and an annotated bibliography for more detailed research
3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2
The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still
under debate. We present three-dimensional hydrodynamical adaptive mesh
refinement (AMR) simulations of G2, modeled as an outflow from a "compact
source" moving on the observed orbit. The construction of mock
position-velocity (PV) diagrams enables a direct comparison with observations
and allow us to conclude that the observational properties of the gaseous
component of G2 could be matched by a massive () and slow ()
outflow, as observed for T Tauri stars. In order for this to be true, only the
material at larger () distances from the source must be
actually emitting, otherwise G2 would appear too compact compared to the
observed PV diagrams. On the other hand, the presence of a central dusty source
might be able to explain the compactness of G2's dust component. In the present
scenario, 5-10 years after pericentre the compact source should decouple from
the previously ejected material, due to the hydrodynamic interaction of the
latter with the surrounding hot and dense atmosphere. In this case, a new
outflow should form, ahead of the previous one, which would be the smoking gun
evidence for an outflow scenario.Comment: resubmitted to MNRAS after referee report, 16 pages, 11 figure
Hydrodynamical simulations of a compact source scenario for G2
The origin of the dense gas cloud G2 discovered in the Galactic Center
(Gillessen et al. 2012) is still a debated puzzle. G2 might be a diffuse cloud
or the result of an outflow from an invisible star embedded in it. We present
here detailed simulations of the evolution of winds on G2's orbit. We find that
the hydrodynamic interaction with the hot atmosphere present in the Galactic
Center and the extreme gravitational field of the supermassive black hole must
be taken in account when modeling such a source scenario. We find that the
hydrodynamic interaction with the hot atmosphere present in the Galactic Center
and the extreme gravitational field of the supermassive black hole must be
taken in account when modeling such a source scenario. We also find that in
this scenario most of the Br\gamma\ luminosity is expected to come from the
highly filamentary densest shocked wind material. G2's observational properties
can be used to constrain the properties of the outflow and our best model has a
mass outflow rate of Mdot,w=8.8 x 10^{-8} Msun/yr and a wind velocity of vw =
50 km/s. These values are compatible with those of a young TTauri star wind, as
already suggested by Scoville & Burkert (2013).Comment: 4 pages, 3 figures; Proceeding of the IAU 303: "The GC: Feeding and
Feedback in a Normal Galactic Nucleus" / September 30 - October 4, 2013,
Santa Fe, New Mexico (USA
Infrared interferometry to spatially and spectrally resolve jets in X-ray binaries
Infrared interferometry is a new frontier for precision ground based
observing, with new instrumentation achieving milliarcsecond (mas) spatial
resolutions for faint sources, along with astrometry on the order of 10
microarcseconds. This technique has already led to breakthroughs in the
observations of the supermassive black hole at the Galactic centre and its
orbiting stars, AGN, and exo-planets, and can be employed for studying X-ray
binaries (XRBs), microquasars in particular. Beyond constraining the orbital
parameters of the system using the centroid wobble and spatially resolving jet
discrete ejections on mas scales, we also propose a novel method to discern
between the various components contributing to the infrared bands: accretion
disk, jets and companion star. We demonstrate that the GRAVITY instrument on
the Very Large Telescope Interferometer (VLTI) should be able to detect a
centroid shift in a number of sources, opening a new avenue of exploration for
the myriad of transients expected to be discovered in the coming decade of
radio all-sky surveys. We also present the first proof-of-concept GRAVITY
observation of a low-mass X-ray binary transient, MAXI J1820+070, to search for
extended jets on mas scales. We place the tightest constraints yet via direct
imaging on the size of the infrared emitting region of the compact jet in a
hard state XRB.Comment: 12 Pages, 3 figures, accepted for publication in MNRA
The Post-Pericenter Evolution of the Galactic Center Source G2
In early 2014 the fast-moving near-infrared source G2 reached its closest
approach to the supermassive black hole Sgr A* in the Galactic Center. We
report on the evolution of the ionized gaseous component and the dusty
component of G2 immediately after this event, revealed by new observations
obtained in 2015 and 2016 with the SINFONI integral field spectrograph and the
NACO imager at the ESO VLT. The spatially resolved dynamics of the Br
line emission can be accounted for by the ballistic motion and tidal shearing
of a test-particle cloud that has followed a highly eccentric Keplerian orbit
around the black hole for the last 12 years. The non-detection of a drag force
or any strong hydrodynamic interaction with the hot gas in the inner accretion
zone limits the ambient density to less than a few 10 cm at the
distance of closest approach (1500 ), assuming G2 is a spherical cloud
moving through a stationary and homogeneous atmosphere. The dust continuum
emission is unresolved in L'-band, but stays consistent with the location of
the Br emission. The total luminosity of the Br and L' emission
has remained constant to within the measurement uncertainty. The nature and
origin of G2 are likely related to that of the precursor source G1, since their
orbital evolution is similar, though not identical. Both object are also likely
related to a trailing tail structure, which is continuously connected to G2
over a large range in position and radial velocity.Comment: 17 pages, 12 figures; accepted for publication in Ap
GRAVITY: the Calibration Unit
We present in this paper the design and characterisation of a new sub-system
of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The
Calibration Unit provides all functions to test and calibrate the beam combiner
instrument: it creates two artificial stars on four beams, and dispose of four
delay lines with an internal metrology. It also includes artificial stars for
the tip-tilt and pupil guiding systems, as well as four metrology pick-up
diodes, for tests and calibration of the corresponding sub-systems. The
calibration unit also hosts the reference targets to align GRAVITY to the VLTI,
and the safety shutters to avoid the metrology light to propagate in the
VLTI-lab. We present the results of the characterisation and validtion of these
differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared
Interferometry IV
3D AMR simulations of G2 as an outflow
We study the evolution of G2 in a \textit{Compact Source Scenario}, where G2
is the outflow from a low-mass central star moving on the observed orbit. This
is done through 3D AMR simulations of the hydrodynamic interaction of G2 with
the surrounding hot accretion flow. A comparison with observations is done by
means of mock position-velocity (PV) diagrams. We found that a massive
() and slow
() outflow can reproduce G2's
properties. A faster outflow () might
also be able to explain the material that seems to follow G2 on the same orbit.Comment: 2 pages, 1 figure, Proceedings of IAU Symposium 322: The
Multi-Messenger Astrophysics of the Galactic Centr
The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI
Interferometric measurements of optical path length differences of stars over
large baselines can deliver extremely accurate astrometric data. The
interferometer GRAVITY will simultaneously measure two objects in the field of
view of the Very Large Telescope Interferometer (VLTI) of the European Southern
Observatory (ESO) and determine their angular separation to a precision of 10
micro arcseconds in only 5 minutes. To perform the astrometric measurement with
such a high accuracy, the differential path length through the VLTI and the
instrument has to be measured (and tracked since Earth's rotation will
permanently change it) by a laser metrology to an even higher level of accuracy
(corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path
techniques are used for nanometer precision measurements, but with these
methods it is difficult to track the full beam size and to follow the light
path up to the primary mirror of the telescope. Here, we present the
preliminary design of a differential path metrology system, developed within
the GRAVITY project. It measures the instrumental differential path over the
full pupil size and up to the entrance pupil location. The differential phase
is measured by detecting the laser fringe pattern both on the telescopes'
secondary mirrors as well as after reflection at the primary mirror. Based on
our proposed design we evaluate the phase measurement accuracy based on a full
budget of possible statistical and systematic errors. We show that this
metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres
- …