22 research outputs found

    Correlations between pathogenic variants in DNA repair genes and anticancer treatment efficacy in stage IV non‐small cell lung cancer: A large real‐world cohort and review of the literature

    No full text
    Abstract Background Mutations in genes involved in DNA damage repair (DDR), a hallmark of cancer, are associated with increased cancer cell sensitivity to certain therapies. This study sought to evaluate the association of DDR pathogenic variants with treatment efficacy in patients with advanced non‐small cell lung cancer (NSCLC). Methods A retrospective cohort of consecutive patients with advanced NSCLC attending a tertiary medical center who underwent next‐generation sequencing in 01/2015‐8/2020 were clustered according to DDR gene status and compared for overall response rate (ORR), progression‐free survival (PFS) (patients receiving systemic therapy), local PFS (patients receiving definitive radiotherapy), and overall survival (OS) using log‐rank and Cox regression analyses. Results Of 225 patients with a clear tumor status, 42 had a pathogenic/likely pathogenic DDR variant (pDDR), and 183 had no DDR variant (wtDDR). Overall survival was similar in the two groups (24.2 vs. 23.1 months, p = 0.63). The pDDR group had a higher median local PFS after radiotherapy (median 45 months vs. 9.9 months, respectively; p = 0.044), a higher ORR (88.9% vs. 36.2%, p = 0.04), and a longer median PFS (not reached vs. 6.0 months, p = 0.01) in patients treated with immune checkpoint blockade. There was no difference in ORR, median PFS, and median OS in patients treated with platinum‐based chemotherapy. Conclusion Our retrospective data suggest that in patients with stage 4 NSCLC, pathogenic variants in DDR pathway genes may be associated with higher efficacy of radiotherapy and immune checkpoint inhibitors (ICIs). This should be further explored prospectively

    Treatment of recent-onset type 1 diabetic patients with DiaPep277: Results of a double-blind, placebo-controlled, randomized phase 3 trial.

    Get PDF
    OBJECTIVE: To evaluate safety and efficacy of DiaPep277 in preserving β-cell function in type 1 diabetic patients. RESEARCH DESIGN AND METHODS: DIA-AID 1 is a multinational, phase 3, balanced-randomized, double-blind, placebo-controlled, parallel-group clinical study. Newly diagnosed patients (N = 457, aged 16-45 years) were randomized to subcutaneous injections of DiaPep277 or placebo quarterly for 2 years. The primary efficacy end point was the change from baseline in the area under the glucagon-stimulated C-peptide curve. Secondary end points were the change from baseline in mixed-meal stimulated C-peptide secretion and in fasting C-peptide and achieving target HbA1c ≤7% (≤53 mmol/mol). Partial remission (target HbA1c on insulin ≤0.5 units/kg/day) and hypoglycemic event rate were exploratory end points. RESULTS: DiaPep277 was safe and well tolerated. Significant preservation of C-peptide secretion was observed in the DiaPep277-treated group compared with the placebo (relative treatment effects of 23.4%, P = 0.037, and 29.2%, P = 0.011, in the modified intent-to-treat [mITT] and per-protocol [PP] populations, respectively). The mixed-meal stimulation failed to distinguish between the groups. There was a trend toward efficacy in fasting C-peptide levels, though not statistically significant. Significantly more DiaPep277-treated than placebo-treated patients maintained target HbA1c (mITT 56% versus 44%, P = 0.03; PP 60% versus 45%, P = 0.0082) and entered partial remission (mITT 38% versus 29%, P = 0.08; PP 42% versus 30%, P = 0.035). DiaPep277 treatment reduced the relative hypoglycemic event risk (mITT by 20%; PP by 28%). CONCLUSIONS: DiaPep277 safely contributes to preservation of β-cell function and to improved glycemic control in patients with type 1 diabetes

    Treatment of Recent-Onset Type 1 Diabetic Patients With DiaPep277: Results of a Double-Blind, Placebo-Controlled, Randomized Phase 3 Trial.

    No full text
    OBJECTIVE To evaluate safety and efficacy of DiaPep277 in preserving ÎČ-cell function in type 1 diabetic patients. RESEARCH DESIGN AND METHODS DIA-AID 1 is a multinational, phase 3, balanced-randomized, double-blind, placebo-controlled, parallel-group clinical study. Newly diagnosed patients (N = 457, aged 16-45 years) were randomized to subcutaneous injections of DiaPep277 or placebo quarterly for 2 years. The primary efficacy end point was the change from baseline in the area under the glucagon-stimulated C-peptide curve. Secondary end points were the change from baseline in mixed-meal stimulated C-peptide secretion and in fasting C-peptide and achieving target HbA1c ≀7% (≀53 mmol/mol). Partial remission (target HbA1c on insulin ≀0.5 units/kg/day) and hypoglycemic event rate were exploratory end points. RESULTS DiaPep277 was safe and well tolerated. Significant preservation of C-peptide secretion was observed in the DiaPep277-treated group compared with the placebo (relative treatment effects of 23.4%, P = 0.037, and 29.2%, P = 0.011, in the modified intent-to-treat [mITT] and per-protocol [PP] populations, respectively). The mixed-meal stimulation failed to distinguish between the groups. There was a trend toward efficacy in fasting C-peptide levels, though not statistically significant. Significantly more DiaPep277-treated than placebo-treated patients maintained target HbA1c (mITT 56% versus 44%, P = 0.03; PP 60% versus 45%, P = 0.0082) and entered partial remission (mITT 38% versus 29%, P = 0.08; PP 42% versus 30%, P = 0.035). DiaPep277 treatment reduced the relative hypoglycemic event risk (mITT by 20%; PP by 28%). CONCLUSIONS DiaPep277 safely contributes to preservation of ÎČ-cell function and to improved glycemic control in patients with type 1 diabetes

    Phase transitions in biogenic amorphous calcium carbonate

    No full text
    Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro
    corecore