7,324 research outputs found

    On global location-domination in graphs

    Full text link
    A dominating set SS of a graph GG is called locating-dominating, LD-set for short, if every vertex vv not in SS is uniquely determined by the set of neighbors of vv belonging to SS. Locating-dominating sets of minimum cardinality are called LDLD-codes and the cardinality of an LD-code is the location-domination number λ(G)\lambda(G). An LD-set SS of a graph GG is global if it is an LD-set of both GG and its complement G\overline{G}. The global location-domination number λg(G)\lambda_g(G) is the minimum cardinality of a global LD-set of GG. In this work, we give some relations between locating-dominating sets and the location-domination number in a graph and its complement.Comment: 15 pages: 2 tables; 8 figures; 20 reference

    Moduli spaces of toric manifolds

    Get PDF
    We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.Comment: To appear in Geometriae Dedicata, minor changes to previous version, 19 pages, 6 figure

    Hamiltonian dynamics and spectral theory for spin-oscillators

    Full text link
    We study the Hamiltonian dynamics and spectral theory of spin-oscillators. Because of their rich structure, spin-oscillators display fairly general properties of integrable systems with two degrees of freedom. Spin-oscillators have infinitely many transversally elliptic singularities, exactly one elliptic-elliptic singularity and one focus-focus singularity. The most interesting dynamical features of integrable systems, and in particular of spin-oscillators, are encoded in their singularities. In the first part of the paper we study the symplectic dynamics around the focus-focus singularity. In the second part of the paper we quantize the coupled spin-oscillators systems and study their spectral theory. The paper combines techniques from semiclassical analysis with differential geometric methods.Comment: 32 page
    corecore