3,202 research outputs found

    A prospective randomised control trial to study the role of intra-peritoneal instillation of ropivacaine versus normal saline irrigation in reduction of post-operative pain in patients undergoing laparoscopic cholecystectomy.

    Get PDF
    The study was done to compare the effect of intra-peritoneal instillation of ropivacaine versus normal saline irrigation on post operative abdominal pain and shoulder pain in laparoscopic cholecystectomy. Ninety patients with symptomatic gall stones disease undergoing laparoscopic cholecystectomy were randomized in three groups. In study group A (n=30 patients) 0.5% of 30 ml (150 mg) of ropivacaine was instilled at gall bladder bed, and in study group B (n=30) 0.9% of 25 – 30 ml/kg of normal saline irrigation was done at gall bladder bed and sub-diaphragmatic space or control group C (n=30) none of above two intervention was done. Pain abdomen is worse during first 24 hours after laparoscopic cholecystectomy. At 6 hours pain abdomen was significantly less in group A compared to group B (p<.035). At 12 hours pain abdomen was less in group A and group B compared to control group. Intensity of shoulder tip pain was almost similar in group A and group B. Group A experienced significantly reduced shoulder tip pain at 6hours and 12 hours as compared to group C. Group B experienced less shoulder tip pain during first postoperative day as compared to control group. Intra-peritoneal instillation of ropivacaine is more effective than normal saline irrigation at early post-operative hours in reducing post-operative pain abdomen after laparoscopic cholecystectomy. However, intra-peritoneal instillation of ropivacaine and normal saline irrigation are comparable in its effect on shoulder tip pain

    Interpreting 750 GeV diphoton excess in SU(5) grand unified theory

    Get PDF
    The ATLAS and CMS experiments at the LHC have found significant excess in the diphoton invariant mass distribution near 750 GeV. We interpret this excess in a predictive nonsupersymmetric SU(5) grand unified framework with a singlet scalar and light adjoint fermions. The 750 GeV resonance is identified as a gauge singlet scalar. Both its production and decays are induced by 24 dimensional adjoint fermions predicted within SU(5). The adjoint fermions are assumed to be odd under Z2Z_2 symmetry which forbids their direct coupling to the standard model fermions. We show that the observed diphoton excess can be explained with sub-TeV adjoint fermions and with perturbative Yukawa coupling. A narrow width scenario is more preferred while a simultaneous explanation of observed cross section and large total decay width requires some of the adjoint fermions lighter than 375 GeV. The model also provides a singlet fermion as a candidate of cold dark matter. The gauge coupling unification is achieved in the framework by introducing color sextet scalars while being consistent with the proton decay constraint.Comment: Discussion added, conclusion unchanged; Matches published version in Physics Letters

    Worst-case Optimal Submodular Extensions for Marginal Estimation

    Get PDF
    Submodular extensions of an energy function can be used to efficiently compute approximate marginals via variational inference. The accuracy of the marginals depends crucially on the quality of the submodular extension. To identify the best possible extension, we show an equivalence between the submodular extensions of the energy and the objective functions of linear programming (LP) relaxations for the corresponding MAP estimation problem. This allows us to (i) establish the worst-case optimality of the submodular extension for Potts model used in the literature; (ii) identify the worst-case optimal submodular extension for the more general class of metric labeling; and (iii) efficiently compute the marginals for the widely used dense CRF model with the help of a recently proposed Gaussian filtering method. Using synthetic and real data, we show that our approach provides comparable upper bounds on the log-partition function to those obtained using tree-reweighted message passing (TRW) in cases where the latter is computationally feasible. Importantly, unlike TRW, our approach provides the first practical algorithm to compute an upper bound on the dense CRF model.Comment: Accepted to AISTATS 201

    A dual-processor multi-frequency implementation of the FINDS algorithm

    Get PDF
    This report presents a parallel processing implementation of the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a dual processor configured target flight computer. First, a filter initialization scheme is presented which allows the no-fail filter (NFF) states to be initialized using the first iteration of the flight data. A modified failure isolation strategy, compatible with the new failure detection strategy reported earlier, is discussed and the performance of the new FDI algorithm is analyzed using flight recorded data from the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. The results show that low level MLS, IMU, and IAS sensor failures are detected and isolated instantaneously, while accelerometer and rate gyro failures continue to take comparatively longer to detect and isolate. The parallel implementation is accomplished by partitioning the FINDS algorithm into two parts: one based on the translational dynamics and the other based on the rotational kinematics. Finally, a multi-rate implementation of the algorithm is presented yielding significantly low execution times with acceptable estimation and FDI performance

    X-ray and EUV Observations of Simultaneous Short and Long Period Oscillations in Hot Coronal Arcade Loops

    Get PDF
    We report decaying quasi-periodic intensity oscillations in the X-ray (6-12 keV) and extreme ultraviolet (EUV) channels (131, 94, 1600, 304 \AA) observed by the Fermi GBM (Gamma-ray Burst Monitor) and SDO/AIA, respectively, during a C-class flare. The estimated period of oscillation and decay time in the X-ray channel (6-12 keV) was about 202 s and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 \AA channels. Simultaneously, AIA hot channels (94 and 131 \AA) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 s and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km/s for about 115 Mm loop length, which is roughly consistent with the sound speed at the temperature about 10-16 MK (480-608 km/s). These EUV oscillations are consistent with the SOHO/SUMER Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could cause the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and precipitating there, causing the observed 202-s periodicity. Other possible interpretations, e.g. the second harmonics of the slow mode are also discussed.Comment: ApJ (in press), 13 pages, 6 figure
    • …
    corecore