21 research outputs found

    Combining autocracy and majority voting: the canonical succession rules of the Latin Church

    Get PDF
    The autocratic turn of the Latin Church in the XI-XIII century, a reaction to the secular power interferences, concentrated the decision-making power in the hands of the top hierarchy, and finally in the hands of the pope. A fundamental step was the change and the constitutionalisation of the procedures for leadership replacement, which were open successions where the contest for power was governed by elections. The autocratic reform limited the active electorate to the clergy only and gradually substituted the episcopal elections by the pope’s direct appointment. Besides, the voting rules changed from unanimity to the dual principle of maioritas et sanioritas (where the majority was identified with the greater part by number and wisdom) and finally to the numerical rule of qualified majority. This evolution aimed at preserving the elections from external interferences and at eliminating the elements of arbitrariness. The most important succession, the papal election, was protected by institutionalising a selectorate and its decision-making rules. The selectorate and the elections did not insert accountability and representation mechanisms but only protected the quality of the autocratic leadership and its autonomy

    Les classes de perfectionnement professionnelles de Lyon

    No full text
    Pacaut M. Les classes de perfectionnement professionnelles de Lyon. In: Enfance, tome 5, n°2, 1952. pp. 177-179

    Functional morphology of the salivary gland of the snail, Helix pomatia: A histochemical and immunocytochemical study

    No full text
    Functional morphology of Helix pomatia salivary gland cells was studied at light microscopic level by using different histochemical methods. Three cell types could be demonstrated in the salivary gland: mucocytes, granular and vacuolated cells. The distribution and the number of the different cell types were different in active and inactive snails. In active feeding animals, dilatated interlobular salivary ducts were observed, which were never present in inactive ones. In active animals an additional cell type, the cystic cell could also be observed. Periodic acid Schiff staining revealed both mucuos and serous elements in the salivary gland. Furthermore, hematoxyline-eosin staining indicated the occurrence of a cell layer with high mitotic activity in the acini. Applying immunohistochemical methods with monoclonal mouse anti-human Ki-67 clone, B56 and polyclonal rabbit anti-human Ki-67 antibodies, we also were able to demonstrate the occurrence of dividing cells in the salivary gland. Analysis of 1-2 µm semi-thin Araldite sections stained with toluidine-blue showed that the saliva can be released, in addition to possible exocytosis, by the lysis of cystic cells. Using an apoptosis kit, we could also establish that this process was due to rather an apoptotic than a necrotic mechanism. In the salivary gland of active snails, where an intensive salivation takes place, significantly more apoptotic cells occurred, if compared to that of inactive animals. It is suggested that programmed cell death may also be involved in the saliva release

    Functional morphology of the salivary gland of the snail, Helix pomatia:

    No full text
    Functional morphology of Helix pomatia salivary gland cells was studied at light microscopic level by using different histochemical methods. Three cell types could be demonstrated in the salivary gland: mucocytes, granular and vacuolated cells. The distribution and the number of the different cell types were different in active and inactive snails. In active feeding animals, dilatated interlobular salivary ducts were observed, which were never present in inactive ones. In active animals an additional cell type, the cystic cell could also be observed. Periodic acid Schiff staining revealed both mucuos and serous elements in the salivary gland. Furthermore, hematoxyline-eosin staining indicated the occurrence of a cell layer with high mitotic activity in the acini. Applying immunohistochemical methods with monoclonal mouse anti-human Ki-67 clone, B56 and polyclonal rabbit anti-human Ki-67 antibodies, we also were able to demonstrate the occurrence of dividing cells in the salivary gland. Analysis of 1-2 microm semi-thin Araldite sections stained with toluidine-blue showed that the saliva can be released, in addition to possible exocytosis, by the lysis of cystic cells. Using an apoptosis kit, we could also establish that this process was due to rather an apoptotic than a necrotic mechanism. In the salivary gland of active snails, where an intensive salivation takes place, significantly more apoptotic cells occurred, if compared to that of inactive animals. It is suggested that programmed cell death may also be involved in the saliva release
    corecore